簡易檢索 / 詳目顯示

研究生: 王景弘
Jing-Hong Wang
論文名稱: 利用電子束微影技術製備奈米結構與黏滯力之相關性研究
Fabrication of Photoresist Nanostructures on the Silicon Surface by E-beam lithography and Characterization of Adhesion Property
指導教授: 陳建光
Jem-Kun Chen
口試委員: 蘇清淵
Ching-Iuan Su
邱顯堂
Hsien-Tang Chiu
張豐志
Feng-Chih Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 143
中文關鍵詞: 黏滯力電子束直寫系統遲滯角
外文關鍵詞: adhesion force, E-beam direct writing system, hysteresis
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  這個研究是藉由電子束微影技術製備奈米光阻結構表面性質研究。正型光阻被用來製作正方形洞矩陣,這些正方形洞矩陣和洞寬度與洞間距分別設計成200 nm至1200 nm和1:1~1:3。深寬比作為表面孔洞深度與寬度的比值。在深寬比為2時,洞矩陣比為1:1之正型光阻的正方形矩陣與表面平坦的正型光阻,接觸角度從71.1°上升至115°,並且接觸角度隨著深寬比增加。結果接近Wenzel's Model和Cassie's Model的理論值。在深寬比為2時以原子力顯微鏡 (AFM) 計算平坦表面之黏滯力從6.4 nN上升至17.3 nN,然而,在洞寬度與洞間距比黏滯力只有稍微的上升。
  此外,負型光阻被用來製作正方形點矩陣,這些正方形點矩陣和點寬度與點間距分別設計成200 nm至1300 nm和1:1~1:6。深寬比作為表面點深度與點寬度之比值的影響研究,在深寬比為2時,點矩陣比為1:1之負型光阻的正方型點矩陣與表面平坦的正型光阻,接觸角度從43.2°上升至97.3°,此外,接觸角度隨著深寬比增加。結果大約近似於Wenzel's Model,但是卻不適合於Cassie's Model的理論值。在深寬比為2時以原子力顯微鏡 (AFM) 計算平坦表面之黏滯力從5.2 nN上升至22 nN,黏滯力因為點寬度與點間距而增加。
在本實驗中,各方面的矩陣比例與深寬比之奈米表面可以控制黏滯力進行模仿壁虎纖毛的粗糙表面。


In this study, nanostructures of photoresists were fabricated by e-beam lithography to investigate the surface property. The positive photoresist was used to fabricate square hole matrixes. The resolutions and duty ratios (hole width /hole spacing) of these square holes were designed from 200 to 1200 nm and 1:1 to 1:3, respectively. Aspect ratios were defined as depth/width of the contact holes to investigate the effect on the surface. At aspact ratio = 2, the contact angles on plate surface of positive photoresist increased from 71.1° to 115°on the square hole matrixes of positive photoresist under duty ratio = 1:1. Moreover, the contact angle increased with the aspect ratio. The results matched approximately with Wenzel's Model and Cassie's Model. The adhesion force from atomic force microscope (AFM) calculation on plate surface increased from 6.4 to the 17.3 nN on the matrix surface at aspect =2. However, the adhesion force just increased slightly with the duty ratios ratio.
Furthermore, the negative photoresist was used to fabricate square dot matrixes. The resolutions and duty ratios (dot width /dot spacing) of these square dots were designed from 200 to 1300 nm and 1:1 to 1:6, respectively. Aspect ratios were defined as depth/width of the dots to investigate the effect on the surface. At aspact ratio = 2, the contact angles on plate surface of negative photoresist increased from 43.2° to 97.3°on the square dot matrixes under duty ratio = 1:1. At duty ratio = 1:1. Moreover, the contact angle on the matrix surface increased with the aspect ratio. The results could fit approximately with Wenzel's Model, but mismatched with Cassie's Model. The adhesion force from atomic force microscope (AFM) calculation on plate surface increased from 5.2 to the 22 nN on the matrix surface at aspect = 2. The adhesion force on the matrix surface increased with the duty ratios.
   In our work, the adhesion forces on the surface were controlled by the nanostructure on the surface with various aspect and duty ratios to imitate gecko setae surface.

摘要 I Abstract III 致謝 V 目錄 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 半導體製程之微影技術介紹 3 1-3 仿生學 7 第二章 原理及相關文獻回顧 9 2-1 電子束微影系統介紹[14] 9 2-1-1 發展背景 10 2-1-2 設備介紹 11 2-2 壁虎纖毛 17 2-3 表面接觸角分析 18 2-3-1 物理意義 19 2-3-2 靜態接觸角 20 2-3-3 動態接觸角 21 2-3-4 液滴濕潤表面 23 2-3-5 遲滯角 24 2-3-6 滾動角 26 2-3-7 表面粗糙度分析 27 2-4 AFM表面形貌分析 31 2-4-1 工作原理 33 2-4-2 操作模式 35 2-4-3 接觸式 (contact mode) 35 2-4-4 非接觸式 (non-contact mode) 36 2-4-5 輕敲式 (tapping or semi-contact mode) 36 2-4-6 等高模式 (constant height mode) 36 2-4-7 等力模式 (constant force mode) 37 2-4-8 黏滯力 (Adhesion force) 37 第三章 實驗 39 3-1 實驗目的 39 3-2 實驗材料與藥品 40 3-3 使用儀器 41 3-3-1自動化光阻塗佈及顯影系統(TRACK) 41 3-3-2 Leica e-beam 電子束直寫系統 43 3-3-3 掃描式電子顯微鏡 44 3-3-4 原子力顯微鏡 46 3-3-5 接觸角分析儀 47 3-4 實驗步驟 49 第四章 結果與討論 52 4-1 正型光阻分析 52 4-1-1 圖案定義分析 52 4-1-2 黏滯力分析 62 4-1-3 接觸角分析 64 4-1-4 遲滯角分析 69 4-1-5 表面張力分析 71 4-2 負型光阻分析 72 4-2-1 圖案定義分析 72 4-2-2 黏滯力分析 109 4-2-3 接觸角分析 111 4-2-4 遲滯角分析 115 第五章 結論 117 參考文獻 119

[1] 林麗娟、田大昌,微結構分析技術之介紹,工業材料雜誌,台灣,第73-39頁,2002。
[2] A. Ku‥ ller, W. Eck, V. Stadler, W. Geyer, and A. Go‥lzha‥usera, “Nanostructuring of silicon by electron-beam lithography of self-assembledhydroxybiphenyl monolayers”, APPLIED PHYSICS LETTERS, 82, 3776~3778(2003).
[3] Neinhuis, C., and Barthlott, W., “Characterization and Distribution of Water-repellent , Self-cleaning Plant Surfaces,” Annals of Botany , 79, 667-677(1997).
[4] 陳冠舟,利用電子束微影製作奈米結構,國立東華大學應用物理所碩士論文,第1~4頁,2005。
[5] 王書榮,自然的啟示(第2版),上海科學技術出版社,1978。
[6] 山東海洋學院生物系譯,仿生學,科學出版社,北京,1975。
[7] W. Barthlott and C. Neinhuis,“ Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta, 202, 8(1997).
[8] E. Arzt, S. Gorb, and R. Spolenak, “From micro to nano contacts in biological attachment devices,” Proceedings of the National Academy of Sciences, 100, 10603~10606, (2003).
[9] 楊嘉麗,新興科技介紹-微機電技術,Market Intelligence Center,第1~23頁,2003。
[10] Jem-Kun Chen, Fu-Hsiang Ko, Kuen-Fong Hsieh and Cheng-Tung Chou, Feng-Chih Chang, “Effect of fluoroalkyl substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography”, American Vacuum Society, 22, 3233~3241(2004).
[11] 施敏,半導體元件物理與製做技術(第二版),交大出版社,2006。
[12] N.威納著,郝季仁譯,控制論,科學出版社,1963。
[13] 黃宏勝,顯微鏡技術在奈米材料之分析應用,2007。
[14] 施敏、邱燦賓,電子束微影技術,國家毫微米元件實驗室專題報導,1990。
[15] 沈瑞文、林芳宇、李旺龍,仿生天地的壁虎遊蹤,專題報導。
[16] 欣創達公司(http://www.sindatek.com/),接觸角測量方法。
[17] K. MA, T. S. Chung and R. J. Good J. “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide”, Polym. Sci. B, 36, 2327(1998).
[18] S. Wu, “Polymer interface and adhesion”, Marcel Dekker Inc. ,16(1982).
[19] D. Quere ,“On water repellency”, Soft Matter, 1, 55(2005)
[20] A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces”, Trans. Faraday Soc., 40, 546(1944).
[21] David B. Willians, C Bary Carter, “ Transemission Electron Microscopy“, plenum Press.
[22] G.Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett, 49, 57(1982).
[23] 柯昱光,以原子力顯微鏡分析透光玻璃陶瓷之奈米微結構與成核密度,大同大學材料工程研究所,碩士論文,第24-30頁,2005。
[24] G. Binnig, C.H Quate, and C. Gerber, Phys. Rev. Lett, 56, 930 (1986).
[25] 林鶴南, 李龍正, 劉克迅, 科儀新知, 17, (3), 29 (1995).
[26] U. Hartmann, “Van der walls interactions between sharp probes and flat sample surfaces”, Phys. Rev. Lett. (1991).
[27] F. O. Goodman and N. Garcia, “Roles of the attractive and repulsive force in atomic force microscopy” (1991).
[28] A. L. Weisenhorn, P.Maivald, H. J. Butt and P. K. Hanhma, “Measuring adhesion, attraction, and repulsion by atomic force microscopy”, Phys.Rev. B. Vol45, PP.226-232, (1992).
[29] M. Saint Jean, S Hudlet, C. Guthmann and J. Berger, “Van der walls and capacitive forces in atomic force microscopy” (1999).
[30] NT-MDT solver P47 Instruction Manual ( NT-MDT Co, Moscow, Russia, 2002 ).
[31] T. R. Albrecht, P. Grutter. D. Horne and D. Rugar. J. Appl. Phys,. 69668 (1991).
[32] Q. Zhong, D.Innis. K. Kjoller and V. B. Elings, Surf. Sci. Lett,. 290. L688 (1993).
[33] 徐盛銘,利用微陣列奈米探針測量蛋白質間單分子結合力,國立陽明大學生醫光電工程研究所碩士論文,第12頁,2008。

無法下載圖示 全文公開日期 2015/07/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE