簡易檢索 / 詳目顯示

研究生: 黃揚清
Yang-Ching Huang
論文名稱: 以3D列印製備腸道動態模擬系統並用於評估胃部排空物質對腸道細胞的影響
Preparation of the 3D Biomimetic Intestinal Model and Its Application in Evaluation of the Effect of the Gastric Empty Liquid on the Intestinal Cells
指導教授: 高震宇
Chen-Yu Kao
口試委員: 羅俊民
Chun-Min Lo
莊依萍
Yi-Ping Chuang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83/0/97
中文關鍵詞: 幽門螺旋桿菌羅伊氏乳桿菌阿莫西林人類結腸癌細胞模擬腸道系統
外文關鍵詞: Helicobacter pylori, Lactobacillus reuteri, Amoxicillin, Caco-2, Simulated intestinal system
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幽門螺旋桿菌 (H.pylori) 為一存在於胃腸道黏膜上的彎曲桿狀革蘭氏陰性微需氧菌,目前許多文獻已說明感染幽門螺桿菌與消化性潰瘍、淋巴瘤、胃癌等消化道疾病的發病機制有關,目前對於幽門螺旋桿菌的治療以服用克拉黴素 (Clarithromycin)、阿莫西林 (Amoxicillin)、甲硝唑 (Metronidazole) 等口服抗生素輔以質子幫浦阻斷劑多重療法為主要治療方法。本實驗室近年來已成功開發出胃部動態模擬系統,用以了解益生菌對H.pylori的抑制情況,及在動態模擬系統下添加Amoxicillin與益生菌共同抑制幽門螺旋桿菌,觀察其抑制情形效果。然而,由於胃的排空效應,這些益生菌與抗生素也會影響到腸道系統,然而目前尚缺少這樣的評估系統。本研究所開發的模擬腸道系統中,主要利用人類結腸癌細胞 (Caco-2) 作為研究對象,由於此細胞在體外長時間培養後會自發分化,分化後的微絨毛結構、細胞表面刷狀邊界、細胞間緊密連接、分泌水解酶等型態與正常腸細胞具有相似特徵,因此時常被用以體外模擬腸道上皮細胞的模型。因此本研究目的在利用3D列印技術開發出一簡化腸道動態模擬系統,以藉此了解在經過模擬胃部排空後,幽門螺旋桿菌、益生菌、抗生素等物質對於腸道細胞Caco-2的影響。
    研究結果顯示在動態胃模擬系統中,投入1000 mg/L的抗生素Amoxicillin Sodium對於幽門螺旋桿菌的抑制有最佳的結果,抑制率為93.16%。而再進一步添加益生菌羅伊氏乳桿菌 (L.reuteri) 共同抑制幽門螺旋桿菌的實驗中,以組別1000 mg/L Amoxicillin Sodium+7ml OD1.0 L.reuteri達到最佳的抑制效果,抑制率達到99.85%,顯示在1000 mg/L Amoxicillin Sodium 的幫助下,隨著益生菌的添加,抑制率會隨之上升。Caco-2已成功培養出分化完整的細胞單層,其單層膜的跨膜上皮電阻 (Transepithelial electrical resistance, TEER) 值、Phenol red滲透性數值(Papp)、分化特性酶活力 (ALP activity、SUC activity) 皆達一定數值。而後投入靜態腸模擬系統,觀察各處理組對腸道上皮屏障功能之效果,發現抗生素Amoxicillin sodium與幽門螺旋桿菌會使腸道細胞存活率分別下降了5.2%和7.7%,顯示兩者在流入腸道環境中,可能會對細胞造成一些損傷;另外也觀察到益生菌羅伊氏乳桿菌在模擬系統當中不會對細胞有損害,在動態腸道模擬系統方面,已成功將細胞單層培養於動態腸道模擬反應槽中,細胞存活率可達79.5%。


    Helicobacter pylori is a curved rod-shaped gram-negative microaerophilic bacteria that exists on the gastrointestinal mucosa. Currently, many literatures indicated that infection with Helicobacter pylori is related to the pathogenesis of peptic ulcer, lymphoma, gastric cancer and other digestive tract diseases. Nowadays, the main treatment for H.pylori is taking different therapy that is antibiotics such as Clarithromycin, Amoxicillin, Metronidazole used with proton pump inhibitor.
    In recent years, our laboratory has successfully developed a gastric dynamic simulation system to understand the inhibitory effect of probiotics on H.pylori, and added Amoxicillin and probiotics to jointly inhibit H.pylori under the dynamic simulation system to observe the inhibitory effect. However, these probiotics and antibiotics still affect the intestinal system due to the gastric emptying effect and an assessment system is currently lacking. Among them, Caco-2 is a human colon cancer cell. Since this cell will spontaneously differentiate after a long-term culture in vitro, the differentiated microvilli structure, cell surface brush-like border, intercellular tight junction, secreted hydrolase and other types are closely related to intestinal cells. For this reasons, Caco-2 cell lines are usually used as a model to simulate intestinal epithelial cells in vitro. Therefore, the purpose of this study was to develop a simplified intestinal dynamic simulation system using 3D printing technology to understand the effects of H.pylori, probiotics, antibiotics and other substances on intestinal cells Caco-2 after simulated gastric emptying impact.
    The research results showed that in the dynamic gastric simulation system, 500 mg of antibiotic Amoxicillin Sodium had the best effect on the inhibition of H.pylori, with an inhibition rate of 93.16%. In the experiment of further adding probiotics L.ruteri to inhibit H.pylori, the group 500 mg Amoxicillin Sodium+7ml OD1.0 L.reuteri achieved the best inhibitory effect, and the inhibition rate reached 99.85%, which showed that in 500mg Amoxicillin Sodium With the help of probiotics, the inhibition rate will increase. Caco-2 has successfully cultured a fully differentiated cell monolayer. The transepithelial electrical resistance (TEER) value, Phenol red permeability value (Papp), differentiation characteristic enzyme activity (ALP activity, SUC activity) of the monolayer membrane have been successfully cultured all reach a certain value. Then put it into the static intestinal simulation system to observe the effect of each treatment group on the intestinal epithelial barrier function. It was found that the antibiotics Amoxicillin sodium can decrease 5.2% survival rate of intestinal cells and H. pylori can decrease 7.7% survival rate of intestinal cells. It showed that both Amoxicillin sodium and H.pylori are flowing into the gut environment, possibly causing some damage to the cells. Successfully, in the dynamic intestinal simulation system, the cell survival rate can reach 83.4% by culturing the cell monolayer in the dynamic intestinal simulation reaction tank.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 3 2.1 幽門螺旋桿菌 (Helicobacter pylori, H.pylori) 3 2.1.1 現今對幽門桿菌的抗生素治療方式 6 2.1.2 現今對幽門桿菌的益生菌治療方式 7 2.2 阿莫西林 (Amoxicillin) 9 2.3 羅伊氏乳桿菌 (Limosilactobacillus reuteri, L.reuteri) 11 2.4 人類結腸腺癌細胞Caco-2 13 2.4.1 Caco-2 CaBBe1 14 2.5人體消化道特性 15 2.5.1 人體胃部特性與排空現象 15 2.5.2 人體腸道特性 18 2.5.2.1 抗生素對腸道環境的影響 20 2.6 現今體外腸道模擬系統 21 第三章 實驗材料與方法 24 3.1 實驗設計 24 3.1.2 實驗架構 25 3.2 實驗藥品與設備 26 3.2.1 實驗藥品與材料 26 3.2.2 實驗儀器設備 28 3.3 幽門螺旋桿菌體外抑制試驗 29 3.3.1 幽門螺旋桿菌和羅尹氏乳桿菌的菌液培養與保存 29 3.3.2 幽門螺旋桿菌和羅尹氏乳桿菌的菌液保存 29 3.3.3 人工胃液 (Simulated gastric juice, SGJ) 製備 29 3.3.4 選擇培養基 (Selective medium) 製備 30 3.3.5 添加Amoxicillin trihydrate和Amoxicillin sodium於動態模擬胃部環境對H.pylori的抑制試驗 31 3.3.6 添加Amoxicillin sodium和L.reuteri於動態模擬胃部環境對H.pylori的抑制試驗 32 3.4 Caco-2細胞單層 33 3.4.1 Caco-2細胞培養 33 3.4.1.1 細胞培養基配置 33 3.4.1.2 細胞活化 33 3.4.1.3 細胞繼代 35 3.4.1.4 細胞凍存 35 3.4.1.5 細胞計數 36 3.4.2 Caco-2細胞單層製備 37 3.4.2 Caco-2細胞單層完整性測定-跨上皮電阻 (TEER) 37 3.4.3 Caco-2細胞單層通透性測定-Phenol red (Papp) 38 3.4.4 Caco-2 細胞單層分化特性 39 3.4.4.1 Caco-2細胞單層鹼性磷酸酶測定 (ALP activity) 39 3.4.4.2 Caco-2細胞單層蔗糖酶測定 (SUC activity) 41 3.4.5 細胞存活率分析-Alamar Blue Assay 43 3.5 體外腸道細胞生長平台建立 45 3.5.1 人工腸液 (Simulated intestinal juice, SIJ) 製備 45 3.5.2菌株Condition medium的製備 45 3.5.3 靜態模擬評估排空物質對腸道系統影響之試驗 46 3.5.4 動態模擬腸道系統 47 3.5.4.1動態模擬腸道系統製作設計 47 3.5.4.2動態模擬評估排空物質對腸道系統影響之試驗 50 第四章 結果 51 4.1 幽門螺旋桿菌體外抑制試驗 51 4.1.1 添加Amoxicillin trihydrate於動態模擬胃部環境對H.pylori的抑制試驗 51 4.1.2 添加Amoxicillin sodium於動態模擬胃部環境對H.pylori的抑制試驗 53 4.1.3 Amoxicillin trihydrate與Amoxicillin sodium於動態模擬胃部環境對H.pylori抑制情形之比較 54 4.1.4 同時添加Amoxicillin sodium和L.reuteri於動態模擬胃部環境對H.pylori的抑制試驗 55 4.2 Caco-2 細胞單層 58 4.2.1 Caco-2細胞單層完整性測定 59 4.2.2 Caco-2細胞單層通透性測定 60 4.2.3 Caco-2 細胞單層分化特性 62 4.2.3.1 Caco-2細胞單層鹼性磷酸酶測定 62 4.2.3.2 Caco-2細胞單層蔗糖酶測定 64 4.3 體外模擬排空物質對腸道系統之影響 65 4.3.1 靜態模擬評估排空物質對腸道系統試驗 66 4.3.2 動態模擬評估排空物質對腸道系統試驗 67 第五章 討論 68 5.1 抗生素Amoxicillin於動態模擬胃部環境對H.pylori抑制評估 68 5.2 同時添加Amoxicillin sodium和L.reuteri於動態模擬胃部環境對H.pylori的抑制評估 70 5.3 Caco-2細胞單層通透性測定 71 5.4 Caco-2細胞單層鹼性磷酸酶測定評估 71 5.5 體外模擬排空物質對腸道系統影響評估 72 第六章 結論 74 未來展望 75 參考文獻 76

    1. Goodwin, C.S., M.M. Mendall, and T.C. Northfield, Helicobacter pylori infection. The Lancet, 1997. 349(9047): p. 265-269.
    2. Dargenio, C., et al., Limosilactobacillus reuteri Strains as Adjuvants in the Management of Helicobacter pylori Infection. Medicina (Kaunas), 2021. 57(7).
    3. Ji, J. and H. Yang, Using Probiotics as Supplementation for Helicobacter pylori Antibiotic Therapy. Int J Mol Sci, 2020. 21(3).
    4. Wlodarska, M., et al., Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun, 2011. 79(4): p. 1536-45.
    5. Bühling, A., et al., Influence of anti‐Helicobacter triple‐therapy with metronidazole, omeprazole and clarithromycin on intestinal microflora. Alimentary pharmacology & therapeutics, 2001. 15(9): p. 1445-1452.
    6. Liou, J.-M., et al., Efficacy and long-term safety of H. pylori eradication for gastric cancer prevention. Cancers, 2019. 11(5): p. 593.
    7. Ansari, S. and Y. Yamaoka, Current understanding and management of Helicobacter pylori infection: an updated appraisal. F1000Research, 2018. 7.
    8. Huang, Y., et al., Adhesion and Invasion of Gastric Mucosa Epithelial Cells by Helicobacter pylori. Front Cell Infect Microbiol, 2016. 6: p. 159.
    9. Correa, P., Helicobacter pylori and gastric carcinogenesis. The American journal of surgical pathology, 1995. 19: p. S37-43.
    10. Beswick, E.J., G. Suarez, and V.E. Reyes, H pylori and host interactions that influence pathogenesis. World journal of gastroenterology: WJG, 2006. 12(35): p. 5599.
    11. Monteiro, M.A., Helicobacter pylori: a wolf in sheep's clothing: the glycotype families of Helicobacter pylori lipopolysaccharides expressing histo-blood groups: structure, biosynthesis, and role in pathogenesis. 2001.
    12. Săsăran, M.O., L.E. Meliț, and E.D. Dobru, MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. Int J Mol Sci, 2021. 22(3).
    13. Yoshiyama, H. and T. Nakazawa, Unique mechanism of Helicobacter pylori for colonizing the gastric mucus. Microbes Infect, 2000. 2(1): p. 55-60.
    14. Paul, W., M.C. Lane, and S. Porwollik, Helicobacter pylori motility. Microbes and infection, 2000. 2(10): p. 1207-1214.
    15. Ierardi, E., et al., The Puzzle of Coccoid Forms of Helicobacter pylori: Beyond Basic Science. Antibiotics (Basel), 2020. 9(6).
    16. Wu, M.L. and K.J. Lewin, Understanding Helicobacter pylori. Hum Pathol, 2001. 32(3): p. 247-9.
    17. Egan, B., et al., Treatment of Helicobacter pylori. Helicobacter, 2007. 12: p. 31-37.
    18. Abadi, A.T.B., Helicobacter pylori treatment: New perspectives using current experience. Journal of global antimicrobial resistance, 2017. 8: p. 123-130.
    19. Cardos, I.A., et al., Revisiting Therapeutic Strategies for H. pylori Treatment in the Context of Antibiotic Resistance: Focus on Alternative and Complementary Therapies. Molecules, 2021. 26(19).
    20. Matsumoto, H., A. Shiotani, and D.Y. Graham, Current and future treatment of Helicobacter pylori infections. Helicobacter pylori in Human Diseases, 2019: p. 211-225.
    21. Chey, W.D., B.C. Wong, and P.P.C.o.t.A.C.o. Gastroenterology, American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Official journal of the American College of Gastroenterology| ACG, 2007. 102(8): p. 1808-1825.
    22. Graham, D.Y. and L. Fischbach, Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut, 2010. 59(8): p. 1143-1153.
    23. Macías‐García, F., et al., Bismuth‐containing quadruple therapy versus concomitant quadruple therapy as first‐line treatment for Helicobacter Pylori infection in an area of high resistance to clarithromycin: A prospective, cross‐sectional, comparative, open trial. Helicobacter, 2019. 24(1): p. e12546.
    24. Andreev, D., Helicobacter pylori eradication therapy: current regimens. Advanced Research in Gastroenterology & Hepatology, 2017. 7(2): p. 555710-555710.
    25. Alcedo, J., et al., Prospective comparative study between two first-line regimens for Helicobacter pylori eradication: Non-bismuth quadruple versus bismuth quadruple therapy. Gastroenterol Hepatol, 2020. 43(6): p. 301-309.
    26. Ribaldone, D.G., et al., Rifabutin-based rescue therapy for Helicobacter pylori eradication: a long-term prospective study in a large cohort of difficult-to-treat patients. Journal of clinical medicine, 2019. 8(2): p. 199.
    27. Oh, B., et al., The effect of probiotics on gut microbiota during the Helicobacter pylori eradication: randomized controlled trial. Helicobacter, 2016. 21(3): p. 165-174.
    28. Roszczenko-Jasińska, P., M.I. Wojtyś, and E.K. Jagusztyn-Krynicka, Helicobacter pylori treatment in the post-antibiotics era—searching for new drug targets. Applied Microbiology and Biotechnology, 2020. 104(23): p. 9891-9905.
    29. Gibson, G.R., et al., Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews Gastroenterology & hepatology, 2017. 14(8): p. 491-502.
    30. Denev, S., Role of lactobacilli gastrointestinal ecosystem. Bulgarian Journal of Agricultural Science, 2006. 12(1): p. 63.
    31. Nam, H., et al., Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori. Applied and Environmental Microbiology, 2002. 68(9): p. 4642-4645.
    32. Aiba, Y., et al., Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. The American journal of gastroenterology, 1998. 93(11): p. 2097-2101.
    33. Cotter, P.D., R.P. Ross, and C. Hill, Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology, 2013. 11(2): p. 95-105.
    34. Pinchuk, I.V., et al., In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial agents and chemotherapy, 2001. 45(11): p. 3156-3161.
    35. Karczewski, J., et al., Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2010. 298(6): p. G851-G859.
    36. Qureshi, N., P. Li, and Q. Gu, Probiotic therapy in Helicobacter pylori infection: a potential strategy against a serious pathogen? Applied microbiology and biotechnology, 2019. 103(4): p. 1573-1588.
    37. https://www.chemsrc.com/en/cas/34642-77-8_402721.html.
    38. https://www.chemsrc.com/en/cas/61336-70-7_161729.html.
    39. Akhavan, B.J., N.R. Khanna, and P. Vijhani, Amoxicillin, in StatPearls. 2022, StatPearls Publishing
    Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL).
    40. Piglansky, L., et al., Bacteriologic and clinical efficacy of high dose amoxicillin for therapy of acute otitis media in children. The Pediatric infectious disease journal, 2003. 22(5): p. 405-412.
    41. Anon, J.B., Acute bacterial rhinosinusitis in pediatric medicine: current issues in diagnosis and management. Paediatric Drugs, 2003. 5: p. 25-33.
    42. Fang, L.S., N.E. Tolkoff-Rubin, and R.H. Rubin, Efficacy of single-dose and conventional amoxicillin therapy in urinary-tract infection localized by the antibody-coated bacteria technic. New England Journal of Medicine, 1978. 298(8): p. 413-416.
    43. Geddes, A.M., K.P. Klugman, and G.N. Rolinson, Introduction: historical perspective and development of amoxicillin/clavulanate. International journal of antimicrobial agents, 2007. 30: p. 109-112.
    44. Todd, P.A. and P. Benfield, Amoxicillin/clavulanic acid. Drugs, 1990. 39(2): p. 264-307.
    45. Kaur, S.P., R. Rao, and S. Nanda, Amoxicillin: a broad spectrum antibiotic. Int J Pharm Pharm Sci, 2011. 3(3): p. 30-7.
    46. Sinkiewicz, G., Lactobacillus reuteri in Health and Disease. 2010, Malmö University.
    47. Hou, C., et al., Study and use of the probiotic Lactobacillus reuteri in pigs: a review. Journal of animal science and biotechnology, 2015. 6(1): p. 1-8.
    48. Gilliland, S., T. Staley, and L. Bush, Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. Journal of dairy science, 1984. 67(12): p. 3045-3051.
    49. Axelsson, L., et al., Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial ecology in health and disease, 1989. 2(2): p. 131-136.
    50. Talarico, T.L. and W.J. Dobrogosz, Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrobial agents and chemotherapy, 1989. 33(5): p. 674-679.
    51. Miyoshi, Y., et al., A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem, 2006. 70(7): p. 1622-8.
    52. MacKenzie, D.A., et al., Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. Journal of Biological Chemistry, 2009. 284(47): p. 32444-32453.
    53. Walter, J., et al., A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Applied and environmental microbiology, 2005. 71(2): p. 979-986.
    54. Salas-Jara, M.J., et al., Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms, 2016. 4(3): p. 35.
    55. Mu, Q., V.J. Tavella, and X.M. Luo, Role of Lactobacillus reuteri in human health and diseases. Frontiers in microbiology, 2018. 9: p. 757.
    56. Mukai, T., et al., Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol Med Microbiol, 2002. 32(2): p. 105-10.
    57. Urrutia-Baca, V.H., et al., In Vitro Antimicrobial Activity and Downregulation of Virulence Gene Expression on Helicobacter pylori by Reuterin. Probiotics Antimicrob Proteins, 2018. 10(2): p. 168-175.
    58. Angelis, I.D. and L. Turco, Caco-2 cells as a model for intestinal absorption. Curr Protoc Toxicol, 2011. Chapter 20: p. Unit20.6.
    59. Sambuy, Y., et al., The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol, 2005. 21(1): p. 1-26.
    60. Ding, X., et al., Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends in Food Science & Technology, 2021. 107: p. 455-465.
    61. Sambuy, Y., et al., The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell biology and toxicology, 2005. 21(1): p. 1-26.
    62. Kebouchi, M., et al., Importance of digestive mucus and mucins for designing new functional food ingredients. Food Research International, 2020. 131: p. 108906.
    63. Walter, E., et al., HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. J Pharm Sci, 1996. 85(10): p. 1070-6.
    64. Lea, T., Caco-2 cell line. The impact of food bioactives on health, 2015: p. 103-111.
    65. Peterson, M.D. and M.S. Mooseker, Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci, 1992. 102 ( Pt 3): p. 581-600.
    66. Masuda, K., A. Kajikawa, and S. Igimi, Establishment and Evaluation of an in vitro M Cell Model using C2BBe1 Cells and Raji Cells. Biosci Microflora, 2011. 30(2): p. 37-44.
    67. Soybel, D.I., Anatomy and physiology of the stomach. Surgical Clinics, 2005. 85(5): p. 875-894.
    68. Tougas, G., et al., Relation of pyloric motility to pyloric opening and closure in healthy subjects. Gut, 1992. 33(4): p. 466-471.
    69. Janssen, P., et al., Review article: the role of gastric motility in the control of food intake. Aliment Pharmacol Ther, 2011. 33(8): p. 880-94.
    70. Calbet, J. and D. MacLean, Role of caloric content on gastric emptying in humans. The Journal of physiology, 1997. 498(2): p. 553-559.
    71. Liu, W., et al., Mechanisms, physiology, and recent research progress of gastric emptying. Critical Reviews in Food Science and Nutrition, 2021. 61(16): p. 2742-2755.
    72. Bellmann, S., et al., Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Research International, 2016. 88: p. 191-198.
    73. Meyer, J.H., et al., Human postprandial gastric emptying of 1–3-millimeter spheres. Gastroenterology, 1988. 94(6): p. 1315-1325.
    74. https://healthjade.com/what-is-the-stomach/.
    75. Mahadevan, V., Anatomy of the small intestine. Surgery (Oxford), 2020. 38(6): p. 283-288.
    76. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/small-intestine.
    77. Birchenough, G.M., et al., New developments in goblet cell mucus secretion and function. Mucosal immunology, 2015. 8(4): p. 712-719.
    78. Clevers, H.C. and C.L. Bevins, Paneth cells: maestros of the small intestinal crypts. Annual review of physiology, 2013. 75: p. 289-311.
    79. Kucharzik, T., et al., Role of M cells in intestinal barrier function. Annals of the New York Academy of Sciences, 2000. 915(1): p. 171-183.
    80. Flemström, G. and M. Sjöblom, Epithelial cells and their neighbors. II. New perspectives on efferent signaling between brain, neuroendocrine cells, and gut epithelial cells. Am J Physiol Gastrointest Liver Physiol, 2005. 289(3): p. G377-80.
    81. Gelberg, H.B., Comparative anatomy, physiology, and mechanisms of disease production of the esophagus, stomach, and small intestine. Toxicol Pathol, 2014. 42(1): p. 54-66.
    82. Holota, Y., et al., The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One, 2019. 14(8): p. e0220642.
    83. Cencič, A. and T. Langerholc, Functional cell models of the gut and their applications in food microbiology—a review. International journal of food microbiology, 2010. 141: p. S4-S14.
    84. in The Impact of Food Bioactives on Health: in vitro and ex vivo models, K. Verhoeckx, et al., Editors. 2015, Springer
    Copyright 2015, The Editor(s) (if applicable) and the Author(s). Cham (CH).
    85. McBride, J., S. Oehlschlager, and A. Hanley, The use of a flow cell bioreactor to measure chronic exposure to food toxins. Biomarkers in Food Chemical Risk Assessments, eds HM Crews and AB Hanley (Cambridge: Royal Society of Chemistry), 1995: p. 64-66.
    86. Hanley, A., et al., Use of a flow cell bioreactor as a chronic toxicity model system. Toxicology in Vitro, 1999. 13(4-5): p. 847-851.
    87. Kim, S.S., R. Penkala, and P. Abrahimi, A perfusion bioreactor for intestinal tissue engineering. Journal of Surgical Research, 2007. 142(2): p. 327-331.
    88. Schweinlin, M., et al., Development of an advanced primary human in vitro model of the small intestine. Tissue Engineering Part C: Methods, 2016. 22(9): p. 873-883.
    89. Mainville, I., Y. Arcand, and E. Farnworth, A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. International journal of food microbiology, 2005. 99(3): p. 287-296.
    90. Giusti, S., et al., A novel dual‐flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers. Biotechnology journal, 2014. 9(9): p. 1175-1184.
    91. Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature biotechnology, 2014. 32(8): p. 760-772.
    92. Chen, H.J., P. Miller, and M.L. Shuler, A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells. Lab on a Chip, 2018. 18(14): p. 2036-2046.
    93. Costa, J. and A. Ahluwalia, Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front Bioeng Biotechnol, 2019. 7: p. 144.
    94. Cook, M.T., et al., Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules, 2011. 12(7): p. 2834-40.
    95. Carullo, G., et al., Sangiovese cv Pomace Seeds Extract-Fortified Kefir Exerts Anti-Inflammatory Activity in an In Vitro Model of Intestinal Epithelium Using Caco-2 Cells. Antioxidants (Basel), 2020. 9(1).
    96. Maher, S., et al., Melittin as an epithelial permeability enhancer I: investigation of its mechanism of action in Caco-2 monolayers. Pharmaceutical research, 2007. 24(7): p. 1336-1345.
    97. Ferruzza, S., et al., A protocol for in situ enzyme assays to assess the differentiation of human intestinal Caco-2 cells. Toxicology in Vitro, 2012. 26(8): p. 1247-1251.
    98. Rampersad, S.N., Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors, 2012. 12(9): p. 12347-12360.
    99. Al-Nasiry, S., et al., The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Human reproduction, 2007. 22(5): p. 1304-1309.
    100. Yazdanian, M., et al., Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res, 1998. 15(9): p. 1490-4.
    101. https://readycell.com/caco-2-permeability-protocol/.
    102. Ferruzza, S., et al., A protocol for differentiation of human intestinal Caco-2 cells in asymmetric serum-containing medium. Toxicol In Vitro, 2012. 26(8): p. 1252-5.
    103. Chamanrokh, P., et al., Three tests used to identify non-culturable form of Helicobacter pylori in water samples. Jundishapur Journal of Microbiology, 2015. 8(4).
    104. Berry, V., K. Jennings, and G. Woodnutt, Bactericidal and morphological effects of amoxicillin on Helicobacter pylori. Antimicrob Agents Chemother, 1995. 39(8): p. 1859-61.

    無法下載圖示 全文公開日期 2027/09/29 (校內網路)
    全文公開日期 2027/09/29 (校外網路)
    全文公開日期 2027/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE