簡易檢索 / 詳目顯示

研究生: PHAM TRAN BAO QUYEN
PHAM TRAN BAO QUYEN
論文名稱: 以啟發式人工智慧基於盈利預測的多目標優選營建投資組合策略研析
Multiobjective-optimized construction stock portfolio investment strategy based on profitability prediction
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 曾惠斌
Hui-Ping Tserng
周子銓
Tzu-Chuan Chou
楊亦東
I-Tung Yang
周瑞生
Jui-Sheng Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 270
外文關鍵詞: portfolio investment management, multiobjective metaheuristics algorithm, stock preselection, multicriteria decision-making
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • TABLE OF CONTENTS ABSTRACT ........................................... i ACKNOWLEDGEMENT ................... iii TABLE OF CONTENTS ..................... iv LIST OF TABLES ............................. viii LIST OF FIGURES ............................. xii LIST OF ABBREVIATIONS ........... xvii CHAPTER 1 INTRODUCTION .......... 1 1.1 Research background and motivation ...................................... 1 1.2 Research purpose and expected contribution ........................... 2 1.3 Research process and organization .......................................... 4 CHAPTER 2 LITERATURE REVIEW ............................................ 7 2.1 Fundamental analysis in portfolio investment management .... 7 2.2 Application of artificial intelligence techniques and metaheuristic optimization algorithms in portfolio investment management . 8 2.2.1 Machine learning techniques for stock preselection ......... 8 2.2.2 Machine learning techniques and metaheuristics algorithms for portfolio allocation ... 9 CHAPTER 3 RESEARCH METHODOLOGY ............................... 12 3.1 Automatic data collection and financial indicator calculation ............................................ 13 3.1.1 Automated data collection from Taiwan marketplace websites ................................... 13 3.1.2 Automated calculation of financial indicators ................ 15 3.2 Stock preselection methodology ............................................ 17 3.2.1 eXtreme Gradient Boosting (XGBoost) .......................... 17 3.2.2 Forensic-based Investigation optimization algorithm (FBI) ........................................ 18 3.2.3 Hybrid machine learning model (FBI-XGBoost) for prediction .................................. 22 3.2.4 Performance evaluation metrics ...................................... 25 3.3 Portfolio optimization methodology ...................................... 27 3.3.1 Mean-variance model (MV) and Equal-weight scheme (EW) ..................................... 27 3.3.2 Multi-objective approach for Portfolio optimization ...... 28 3.3.3 Multi-objective Forensic-based Investigation based on Decomposition algorithm (MOFBI/D) .................................. 31 3.3.4 Multi-criteria decision-making technique ....................... 47 3.3.5 Performance evaluation criteria ...................................... 50 CHAPTER 4 FORENSIC-BASED INVESTIGATION OPTIMIZED MACHINE LEARNING FOR STOCK PRESELECTION ......... 53 4.1 Stock preselection procedure .... 53 4.2 Experimental design .................. 54 4.2.1 Data and data processing .... 54 4.2.2 Alternative models and benchmarks ............................... 60 4.3 Performance of the prediction task for stock preselection ..... 61 4.4 Experimental result of the stock preselection phase .............. 63 4.5 Conclusion remarks ................... 66 CHAPTER 5 MULTI-OBJECTIVE FORENSIC-BASED INVESTIGATION ALGORITHM FOR PORTFOLIO OPTIMIZATION 68 5.1 Procedure of the portfolio optimization stage ........................ 68 5.2 Experimental design .................. 69 5.2.1 Data and data processing .... 69 5.2.2 Parameter setting of MOFBI/D algorithm ...................... 72 5.2.3 Parameter setting of TOPSIS .......................................... 72 5.3 Performance of the optimization task ..................................... 73 5.4 Experimental result of the Portfolio optimization phase ........ 73 5.5 Conclusion remarks ................... 76 CHAPTER 6 PERFORMANCE ANALYSIS OF FINANCIAL INVESTMENT STRATEGY FROM THE DEVEOPED MODEL ... 77 6.1 Baseline model and stocks for analyses and comparison ....... 77 6.2 Analyses and experimental results of the AID-FXMM model for portfolio investment management .................................... 77 6.2.1 Analysis of the minimum expected ROI for each portfolio candidate ......................... 80 6.2.2 Analysis of the maximum number of assets in the portfolio ........................................ 80 6.3 Analysis result ........................... 81 6.3.1 Analysis results related to expected ROI threshold ........ 81 6.3.2 Analysis results involved in maximum number of assets ............................................ 94 6.4 Conclusion marks .................... 120 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS .. 121 7.1 Discussion and conclusion ...... 121 7.1.1 Contributions .................... 121 7.1.2 Theoretical implications ... 122 7.1.3 Practical implications .................................................... 122 7.2 Limitations and recommendations for future research ......... 123 References ......................................... 124 APPENDIX A: Result of predicted return on investments and ranks of construction companies for stock preselection stage ............... 130 APPENDIX B. Performance of MOFBI/D algorithm in mathematical test functions for multi/many-objective problems ......... 145 APPENDIX C: Transaction information in the back-testing evaluation .................................... 152 APPENDIX C-I: Transaction information of the analysis related to expected ROI ............... 152 APPENDIX C-II: Transaction information of the analysis of maximum number of assets ... 162 APPENDIX D: PROGRAMMING CODE .................................... 182 APPENDIX E: AID-FXMM MODEL TUTORIAL ...................... 233

    [1] McGowan C. A Study Of The Relationship Between Stock Market Development And Economic Growth And Development For 1994 To 2003. International Business & Economics Research Journal (IBER) 2011;7.
    [2] Pheng LS, Hou LS. The Economy and the Construction Industry. In: Sui Pheng L, Shing Hou L, editors. Construction Quality and the Economy: A Study at the Firm Level. Singapore: Springer Singapore; 2019. p. 21-54.
    [3] Wang W, Li W, Zhang N, Liu K. Portfolio formation with preselection using deep learning from long-term financial data. Expert Systems with Applications 2020;143:113042.
    [4] Silva A, Neves R, Horta N. A hybrid approach to portfolio composition based on fundamental and technical indicators. Expert Systems with Applications 2015;42:2036-48.
    [5] Armananzas R, Lozano JA. A multiobjective approach to the portfolio optimization problem. 2005 IEEE Congress on Evolutionary Computation2005. p. 1388-95 Vol. 2.
    [6] Pandari AR, Azar A, Shavazi AR. Genetic algorithms for portfolio selection problems with non-linear objectives. African Journal of Business Management 2012;6:6209-16.
    [7] Bodnar T, Mazur S, Okhrin Y. Bayesian estimation of the global minimum variance portfolio. European Journal of Operational Research 2017;256:292-307.
    [8] Chen W, Zhang H, Mehlawat MK, Jia L. Mean–variance portfolio optimization using machine learning-based stock price prediction. Applied Soft Computing 2021;100:106943.
    [9] Edirisinghe NCP, Zhang X. Generalized DEA model of fundamental analysis and its application to portfolio optimization. Journal of Banking & Finance 2007;31:3311-35.
    [10] Xi X, Gao X, Guan Q, Liu N, Feng S, Liu X, et al. Inferring Energy Stock Returns Based on Financial Indicators from the Network Perspective. Emerging Markets Finance and Trade 2019;55:2738-55.
    [11] Kryzanowski L, Michael G, Wright DW. Using Artificial Neural Networks to Pick Stocks. Financial Analysts Journal 1993;49:21-7.
    [12] Kanas A. Neural Network Linear Forecasts for Stock Returns. International Journal of Finance & Economics 2001;6:245-54.
    [13] Sharma A, Mehra A. Financial analysis based sectoral portfolio optimization under second order stochastic dominance. Annals of Operations Research 2017;256:171-97.
    [14] Guerard JB, Markowitz H, Xu G. Earnings forecasting in a global stock selection model and efficient portfolio construction and management. International Journal of Forecasting 2015;31:550-60.
    [15] Ou JA, Penman SH. Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics 1989;11:295-329.
    [16] Quah T-S, Srinivasan B. Improving returns on stock investment through neural network selection. Expert Systems with Applications 1999;17:295-301.
    [17] Dai Z, Zhu H. Indicator selection and stock return predictability. The North American Journal of Economics and Finance 2021;57:101394.
    [18] Welch I, Goyal A. A Comprehensive Look at The Empirical Performance of Equity Premium Prediction. The Review of Financial Studies 2008;21:1455-508.
    [19] Samaras G, Matsatsinis N, Zopounidis C. A multicriteria DSS for stock evaluation using fundamental analysis. European Journal of Operational Research 2008;187:1380-401.
    [20] Xidonas P, Mavrotas G, Psarras J. A multicriteria methodology for equity selection using financial analysis. Computers & Operations Research 2009;36:3187-203.
    [21] Guerard J, Xu G, Gultekin M. Investing with Momentum: The Past, Present, and Future. The Journal of Investing 2012;21:68-80.
    [22] Guerard JB, Rachev ST, Shao BP. Efficient global portfolios: Big data and investment universes. IBM Journal of Research and Development 2013;57:11:1-:.
    [23] Markowitz H. PORTFOLIO SELECTION*. The Journal of Finance 1952;7:77-91.
    [24] Mansini R, Ogryczak W, Speranza MG. Linear Models for Portfolio Optimization. 2015. p. 19-45.
    [25] Duan YC. A Multi-Objective Approach to Portfolio Optimization. Rose–Hulman Undergraduate Mathematics Journal 2007;8:12.
    [26] Ma Y, Han R, Wang W. Portfolio optimization with return prediction using deep learning and machine learning. Expert Systems with Applications 2021;165:113973.
    [27] Yu J-R, Lee W-Y. Portfolio rebalancing model using multiple criteria. European Journal of Operational Research 2011;209:166-75.
    [28] Markowitz HM. Portfolio Selection: Efficient Diversification of Investments: Yale University Press; 1959.
    [29] Chen W, Li D, Liu YJ. A Novel Hybrid ICA-FA Algorithm for Multiperiod Uncertain Portfolio Optimization Model Based on Multiple Criteria. IEEE Transactions on Fuzzy Systems 2019;27:1023-36.
    [30] Akbay MA, Kalayci CB, Polat O. A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization. Knowledge-Based Systems 2020;198:105944.
    [31] Jiang C, Du J, An Y. Combining the minimum-variance and equally-weighted portfolios: Can portfolio performance be improved? Economic Modelling 2018;80.
    [32] Min L, Dong J, Liu J, Gong X. Robust mean-risk portfolio optimization using machine learning-based trade-off parameter. Applied Soft Computing 2021;113:107948.
    [33] Chang T-J, Yang S-C, Chang K-J. Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications 2009;36:10529-37.
    [34] Yu L, Wang S, Lai KK. Neural network-based mean–variance–skewness model for portfolio selection. Computers & Operations Research 2008;35:34-46.
    [35] Rezaei Pouya A, Solimanpur M, Jahangoshai Rezaee M. Solving multi-objective portfolio optimization problem using invasive weed optimization. Swarm and Evolutionary Computation 2016;28:42-57.
    [36] Lam M. Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems 2004;37:567-81.
    [37] Enke D, Thawornwong S. The use of data mining and neural networks for forecasting stock market returns. Expert Systems with Applications 2005;29:927-40.
    [38] Huang C-F. A hybrid stock selection model using genetic algorithms and support vector regression. Applied Soft Computing 2012;12:807-18.
    [39] Paiva FD, Cardoso RTN, Hanaoka GP, Duarte WM. Decision-making for financial trading: A fusion approach of machine learning and portfolio selection. Expert Systems with Applications 2019;115:635-55.
    [40] Qu BY, Zhou Q, Xiao JM, Liang JJ, Suganthan PN. Large-Scale Portfolio Optimization Using Multiobjective Evolutionary Algorithms and Preselection Methods. Mathematical Problems in Engineering 2017;2017:4197914.
    [41] Yu J-R, Paul Chiou W-J, Lee W-Y, Lin S-J. Portfolio models with return forecasting and transaction costs. International Review of Economics & Finance 2020;66:118-30.
    [42] Wang H, Li X, Hong W, Tang K. Multi-objective approaches to portfolio optimization with market impact costs. Memetic Computing 2022.
    [43] Skolpadungket P, Dahal K, Harnpornchai N. Portfolio optimization using multi-obj ective genetic algorithms. 2007 IEEE Congress on Evolutionary Computation2007. p. 516-23.
    [44] Branke J, Scheckenbach B, Stein M, Deb K, Schmeck H. Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. European Journal of Operational Research 2009;199:684-93.
    [45] Gong X-L, Xiong X. Multi-objective portfolio optimization under tempered stable Lévy distribution with Copula dependence. Finance Research Letters 2021;38:101506.
    [46] Babaei S, Sepehri MM, Babaei E. Multi-objective portfolio optimization considering the dependence structure of asset returns. European Journal of Operational Research 2015;244:525-39.
    [47] Saborido R, Ruiz AB, Bermúdez JD, Vercher E, Luque M. Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing 2016;39:48-63.
    [48] Zhao P, Gao S, Yang N. Solving Multi-Objective Portfolio Optimization Problem Based on MOEA/D. 2020 12th International Conference on Advanced Computational Intelligence (ICACI)2020. p. 30-7.
    [49] Rangel-González JA, Fraire H, Solís JF, Cruz-Reyes L, Gomez-Santillan C, Rangel-Valdez N, et al. Fuzzy Multi-objective Particle Swarm Optimization Solving the Three-Objective Portfolio Optimization Problem. International Journal of Fuzzy Systems 2020;22:2760-8.
    [50] Suksonghong K, Boonlong K, Goh K-L. Multi-objective genetic algorithms for solving portfolio optimization problems in the electricity market. International Journal of Electrical Power & Energy Systems 2014;58:150-9.
    [51] Avramov D, Kaplanski G, Levy H. Talking Numbers: Technical versus fundamental investment recommendations. Journal of Banking & Finance 2018;92:100-14.
    [52] Edirisinghe N, Zhang X. Portfolio selection under DEA-based relative financial strength indicators: Case of US industries. Journal of the Operational Research Society 2008;59:842-56.
    [53] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System2016.
    [54] Deng S, Huang X, Qin Z, Fu Z, Yang T. A novel hybrid method for direction forecasting and trading of Apple Futures. Applied Soft Computing 2021;110:107734.
    [55] Nobre J, Neves RF. Combining Principal Component Analysis, Discrete Wavelet Transform and XGBoost to trade in the financial markets. Expert Systems with Applications 2019;125:181-94.
    [56] Chou J-S, Liu C-Y, Prayogo H, Khasani RR, Gho D, Lalitan GG. Predicting nominal shear capacity of reinforced concrete wall in building by metaheuristics-optimized machine learning. Journal of Building Engineering 2022;61:105046.
    [57] Chou J-S, Nguyen N-M. FBI inspired meta-optimization. Applied Soft Computing 2020;93:106339.
    [58] Chou J-S, Truong D-N. Multiobjective forensic-based investigation algorithm for solving structural design problems. Automation in Construction 2022;134:104084.
    [59] Nguyen D-T, Chou J-S, Tran D-H. Integrating a novel multiple-objective FBI with BIM to determine tradeoff among resources in project scheduling. Knowledge-Based Systems 2022;235:107640.
    [60] Ayala J, García-Torres M, Noguera JLV, Gómez-Vela F, Divina F. Technical analysis strategy optimization using a machine learning approach in stock market indices. Knowledge-Based Systems 2021;225:107119.
    [61] Weng B, Lu L, Wang X, Megahed FM, Martinez W. Predicting short-term stock prices using ensemble methods and online data sources. Expert Systems with Applications 2018;112:258-73.
    [62] Ehrgott M. Multicriteria Optimization. 2 ed: Springer-Verlag; 2005.
    [63] Olorunnimbe K, Viktor H. Deep learning in the stock market—a systematic survey of practice, backtesting, and applications. Artificial Intelligence Review 2022.
    [64] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning: Addison-Wesley Longman Publishing Co., Inc.; 1989.
    [65] Srinivas N, Deb K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 1994;2:221-48.
    [66] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 2002;6:182-97.
    [67] Long Q, Xue W, Wu C. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization 2017;13.
    [68] Raquel C, Naval P. An effective use of crowding distance in multiobjective particle swarm optimization: Association for Computing Machinery; 2005.
    [69] Padhye N, Branke J, Mostaghim S. Empirical comparison of MOPSO methods - Guide selection and diversity preservation. 2009 IEEE Congress on Evolutionary Computation2009. p. 2516-23.
    [70] Santana RA, Pontes MR, Bastos-Filho CJA. A Multiple Objective Particle Swarm Optimization Approach Using Crowding Distance and Roulette Wheel. 2009 Ninth International Conference on Intelligent Systems Design and Applications2009. p. 237-42.
    [71] Duman S, Akbel M, Kahraman HT. Development of the Multi-Objective Adaptive Guided Differential Evolution and optimization of the MO-ACOPF for wind/PV/tidal energy sources. Applied Soft Computing 2021;112:107814.
    [72] Dai C, Wang Y, Ye M. A new multi-objective particle swarm optimization algorithm based on decomposition. Information Sciences 2015;325:541-57.
    [73] Lin Q, Li J, Du Z, Chen J, Ming Z. A novel multi-objective particle swarm optimization with multiple search strategies. European Journal of Operational Research 2015;247:732-44.
    [74] Zhang Q, Li H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation 2007;11:712-31.
    [75] Peng W, Zhang Q. A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems. 2008 IEEE International Conference on Granular Computing, GRC 20082008. p. 534-7.
    [76] Martínez SZ, Coello CAC. A multi-objective particle swarm optimizer based on decomposition. Proceedings of Proceedings of the 13th annual conference on Genetic and evolutionary computation. Dublin, Ireland: Association for Computing Machinery; 2011.
    [77] Al Moubayed N, Petrovski A, McCall J. D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces. Evol Comput 2014;22:47-77.
    [78] Zhang H, Wu J, Sun C, Zhong M, Yang R. A Multi-objective Particle Swarm Optimizer Based on Simulated Annealing and Decomposition. 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS)2018. p. 262-73.
    [79] Guo J, Yang S, Jiang S. An adaptive penalty-based boundary intersection approach for multiobjective evolutionary algorithm based on decomposition. 2016 IEEE Congress on Evolutionary Computation (CEC)2016. p. 2145-52.
    [80] Ishibuchi H, Akedo N, Nojima Y. Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems. IEEE Transactions on Evolutionary Computation 2015;19:264-83.
    [81] Deb K, Jain H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 2014;18:577-601.
    [82] Deb D, Bhargava K. Optimization of on-site PID detection methods. 2022. p. 133-49.
    [83] Tzeng G-H, Huang J-J. Multiple Attribute Decision Making: Methods and Applications. 2011.
    [84] Krohling RA, Pacheco AGC. A-TOPSIS – An Approach Based on TOPSIS for Ranking Evolutionary Algorithms. Procedia Computer Science 2015;55:308-17.
    [85] Izzo FBaD. A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software 2020;5:2338.
    [86] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 2011;12:2825-30.
    [87] Kuo C-C. COVID-19 in Taiwan: Economic Impacts and Lessons Learned. Asian Economic Papers 2020;20:1-47.

    無法下載圖示 全文公開日期 2028/02/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE