簡易檢索 / 詳目顯示

研究生: 周晉毅
Chin-Yi Chou
論文名稱: F-AnoGAN 修改損失函數與梯度平滑值於電子零件之異常偵測效果改善
Improvement of Anomaly Detection in Electronic Components by Modifying the Loss Function of F-AnoGAN with Added Gradient Smoothing Value
指導教授: 歐陽超
Chao Ou-Yang
口試委員: 郭人介
Ren-Jieh Kuo
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 自動化光學檢測異常偵測無監督模型GAN模型結構相似性
外文關鍵詞: automated optical inspection, anomaly detection, unsupervised models, GAN models, structural similarity
相關次數: 點閱:413下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異常檢測對於確保電子元件的質量和可靠性有著重要的作用。 在本文中,我們提出一種新的指標梯度平滑值並加入於 F-AnoGAN的損失函數中進行改進。 目標是提高電子元件異常檢測的有效性。
    這種方法有助於減少訓練過程中梯度突然波動的影響,這可能導致異常檢測不穩定和不准確。 通過平滑梯度,該模型在識別電子元件異常方面變得更加穩健和可靠。
    為了評估修改後的 F-AnoGAN 的有效性,我們使用電子元件圖像數據集進行了實驗。 該數據集由正常和異常樣本組成,代表各種類型的缺陷,例如缺失零件、划痕和未對準的連接器。 我們在數據集上訓練了修改後的 F-AnoGAN,並將其性能與原始 F-AnoGAN 進行了比較。
    實驗結果表明,與原始模型相比,改進的 F-AnoGAN 實現了改進的異常檢測性能。 損失函數中加入梯度平滑值,有效減輕了噪聲梯度的影響,增強了模型準確識別電子元件異常的能力。 修改後的 F-AnoGAN 在檢測異常方面表現出更高的精確度、召回率和準確度,從而提高了異常檢測系統的整體可靠性。
    從結論得知,所提出的對 F-AnoGAN 損失函數的修改,結合了梯度平滑值,有助於電子元件異常檢測的進步。 這項研究為改善電子行業的質量控制和缺陷檢測流程提供了實際意義。


    Anomaly detection plays an important role in ensuring the quality and reliability of electronic components. In this paper, we propose a new indicator gradient smoothing value and add it to the loss function of F-AnoGAN for improvement. The goal is to improve the effectiveness of anomaly detection in electronic components.
    This approach helps reduce the impact of sudden gradient fluctuations during training, which can lead to unstable and inaccurate anomaly detection. By smoothing the gradients, the model becomes more robust and reliable in identifying anomalies in electronic components.
    To evaluate the effectiveness of the modified F-AnoGAN, we conduct experiments with an electronic component image dataset. The dataset consists of normal and abnormal samples representing various types of defects such as missing parts, scratches, and misaligned connectors. We trained the modified F-AnoGAN on the dataset and compared its performance with the original F-AnoGAN.
    Experimental results show that the improved F-AnoGAN achieves improved anomaly detection performance compared to the original model. The gradient smoothing value is added to the loss function, which effectively reduces the influence of the noise gradient and enhances the ability of the model to accurately identify abnormalities in electronic components. The modified F-AnoGAN exhibits higher precision, recall, and accuracy in detecting anomalies, thereby improving the overall reliability of the anomaly detection system.
    From the conclusion, the proposed modification of the F-AnoGAN loss function, incorporating gradient smoothing values, contributes to the advancement of electronic component anomaly detection. This research has practical implications for improving quality control and defect detection processes in the electronics industry.

    Anomaly detection plays an important role in ensuring the quality and reliability of electronic components. In this paper, we propose a new indicator gradient smoothing value and add it to the loss function of F-AnoGAN for improvement. The goal is to improve the effectiveness of anomaly detection in electronic components. This approach helps reduce the impact of sudden gradient fluctuations during training, which can lead to unstable and inaccurate anomaly detection. By smoothing the gradients, the model becomes more robust and reliable in identifying anomalies in electronic components. To evaluate the effectiveness of the modified F-AnoGAN, we conduct experiments with an electronic component image dataset. The dataset consists of normal and abnormal samples representing various types of defects such as missing parts, scratches, and misaligned connectors. We trained the modified F-AnoGAN on the dataset and compared its performance with the original F-AnoGAN. Experimental results show that the improved F-AnoGAN achieves improved anomaly detection performance compared to the original model. The gradient smoothing value is added to the loss function, which effectively reduces the influence of the noise gradient and enhances the ability of the model to accurately identify abnormalities in electronic components. The modified F-AnoGAN exhibits higher precision, recall, and accuracy in detecting anomalies, thereby improving the overall reliability of the anomaly detection system. From the conclusion, the proposed modification of the F-AnoGAN loss function, incorporating gradient smoothing values, contributes to the advancement of electronic component anomaly detection. This research has practical implications for improving quality control and defect detection processes in the electronics industry.

    Uncategorized References
    Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. International conference on machine learning,
    Berg, A., Ahlberg, J., & Felsberg, M. (2019). Unsupervised learning of anomaly detection from contaminated image data using simultaneous encoder training. arXiv preprint arXiv:1905.11034.
    Bhunia, S., & Tehranipoor, M. (2019). chapter 4 -printed circuit board(PCB):design and test. . hardward security, 81-105.
    Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58.
    Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE signal processing magazine, 35(1), 53-65.
    Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 26.
    De Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of operations research, 134, 19-67.
    Dewi, C., Chen, R.-C., Liu, Y.-T., & Yu, H. (2021). Various generative adversarial networks model for synthetic prohibitory sign image generation. Applied Sciences, 11(7), 2913.
    Gao, W., Zhang, X., Yang, L., & Liu, H. (2010). An improved Sobel edge detection. 2010 3rd International conference on computer science and information technology,
    Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
    Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. Advances in neural information processing systems, 30.
    Hore, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. 2010 20th international conference on pattern recognition,
    Islam, J., & Zhang, Y. (2020). GAN-based synthetic brain PET image generation. Brain informatics, 7, 1-12.
    Jones, D. R., Perttunen, C. D., & Stuckman, B. E. (1993). Lipschitzian optimization without the Lipschitz constant. Journal of optimization Theory and Applications, 79, 157-181.
    Kim, S., Kim, W., Noh, Y.-K., & Park, F. C. (2017). Transfer learning for automated optical inspection. 2017 international joint conference on neural networks (IJCNN),
    Kimura, D., Chaudhury, S., Narita, M., Munawar, A., & Tachibana, R. (2020). Adversarial discriminative attention for robust anomaly detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
    Kowalski, M., Garbin, S. J., Estellers, V., Baltrušaitis, T., Johnson, M., & Shotton, J. (2020). Config: Controllable neural face image generation. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16,
    Li, H., Hu, D., Liu, H., Wang, J., & Oguz, I. (2022). Cats: Complementary CNN and Transformer Encoders for Segmentation. 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI),
    Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2015). Adversarial autoencoders. arXiv preprint arXiv:1511.05644.
    Mi, J., Ma, C., Zheng, L., Zhang, M., Li, M., & Wang, M. (2023). WGAN-CL: A Wasserstein GAN with Confidence Loss for Small-Sample Augmentation. Expert Systems with Applications, 120943.
    Moura, L. D., & Bjørner, N. (2011). Satisfiability modulo theories: introduction and applications. Commun. ACM, 54(9), 69–77. https://doi.org/10.1145/1995376.1995394
    Panaretos, V. M., & Zemel, Y. (2019). Statistical aspects of Wasserstein distances. Annual review of statistics and its application, 6, 405-431.
    Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
    Saatci, Y., & Wilson, A. G. (2017). Bayesian gan. Advances in neural information processing systems, 30.
    Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. Advances in neural information processing systems, 29.
    Schlegl, T., Seeböck, P., Waldstein, S. M., Langs, G., & Schmidt-Erfurth, U. (2019). f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical image analysis, 54, 30-44.
    Shin, H.-C., Tenenholtz, N. A., Rogers, J. K., Schwarz, C. G., Senjem, M. L., Gunter, J. L., Andriole, K. P., & Michalski, M. (2018). Medical image synthesis for data augmentation and anonymization using generative adversarial networks. Simulation and Synthesis in Medical Imaging: Third International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 3,
    Shore, J., & Johnson, R. (1981). Properties of cross-entropy minimization. IEEE Transactions on Information Theory, 27(4), 472-482.
    Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.
    Teramoto, A., Tsukamoto, T., Yamada, A., Kiriyama, Y., Imaizumi, K., Saito, K., & Fujita, H. (2020). Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks. PloS one, 15(3), e0229951.
    Weng, L. (2019). From gan to wgan. arXiv preprint arXiv:1904.08994.
    Wu, F., & Zhang, X. (2014). An inspection and classification method for chip solder joints using color grads and Boolean rules. Robotics and Computer-Integrated Manufacturing, 30(5), 517-526.
    Wu, J., Zhang, C., Xue, T., Freeman, B., & Tenenbaum, J. (2016). Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. Advances in neural information processing systems, 29.
    Wu, Y., & He, K. (2018). Group normalization. Proceedings of the European conference on computer vision (ECCV),
    Wyatt, J., Leach, A., Schmon, S. M., & Willcocks, C. G. (2022). Anoddpm: Anomaly detection with denoising diffusion probabilistic models using simplex noise. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
    Zhao, G., Meyerand, M. E., & Birn, R. M. (2020). Bayesian conditional GAN for MRI brain image synthesis. arXiv preprint arXiv:2005.11875.
    Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L., & Ma, Z. (2020). Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Information Sciences, 512, 1009-1023.

    QR CODE