簡易檢索 / 詳目顯示

研究生: 林奕成
I-CHENG LIN
論文名稱: 稀土元素(氧化鑭)對SKD61熱作模具鋼表面被覆層磨耗性能之影響
The Effects of Rare Earth Elements (La2O3)on Wear Performance of Cladded SKD61
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 蘇侃
HON SO
向四海
Su - Hai Hsiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 116
中文關鍵詞: 硼化鎢稀土元素氬銲磨耗
外文關鍵詞: Tungsten Boride, rare earth, GTAW, wear
相關次數: 點閱:310下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討添加不同比例稀土元素(氧化鑭),對於SKD61模具鋼表面氬銲被覆硼化鎢(WB)陶瓷被覆層之顯微結構與磨耗行為的影響。並找出影響耐磨耗能力之主要關鍵,以做為SKD61模具鋼表面耐磨耗改質的依據。
研究結果顯示,WB系列之被覆層則屬於析出強化型機構。在WB被覆層中添加適量之氧化鑭(La2O3)可以使基地的顯微組織微細化,並促進析出物之成長。添加氧化鑭(La2O3)的WB被覆層內的析出相較厚實,具較佳之機械互鎖效應,其中以添加3.0%氧化鑭之WB被覆層效果最佳,使其被覆層之耐磨耗能力有效地提升。然而,值得注意的是必須添加適量的氧化鑭(La2O3),過量的氧化鑭(La2O3)反而無益於微結構改善與耐磨耗能力。


This thesis studies the effect of rare earth (La2O3) on microstructure morphology and wear resistance of clad layer for SKD61 tool steel cladded with WB powder. In addition, the major factors that influence wear performance of clad layer were found out in this study.
According to the results of this study, WB clad layers were strengthened by the precipitation of reinforcing phases. The results show that adding suitable amount of La2O3 can promote microstructure refining and precipitates growing in WB clad layer. Thicker precipitates possess better mechanical interlocking effect and can increase significantly the wear-resistance ability in WB cladding specimens. The wear performance of WB-3.0% La2O3 clad layer was improved obviously. Nevertheless, it should be emphasized that it is suitable to add certain amount of La2O3. And too much La2O3 would not be beneficial to improve the microstructure and wear performance.

目錄 中文摘要…………………………………………………………… Ⅰ 英文摘要…………………………………………………………… Ⅱ 致謝………………………………………………………………… III 目錄………………………………………………………………… IV 表索引……………………………………………………………… VI 圖索引……………………………………………………………… VII 第一章 前 言…………………………………………………… 1 第二章 文獻回顧………………………………………………… 3 2-1 表面被覆技術之介紹……………………………… 3 2-2 惰氣鎢極電弧銲被覆的特點……………………… 4 2-3 熔融銲接的凝固特徵與形態……………………… 6 2-3-1顯微結構…………………………………… 6 2-3-2銲道外觀形態……………………………… 6 2-4 被覆之陶瓷粉末的特性…………………………… 6 2-5 稀土元素…………………………………………….... 7 2-5-1稀土元素的種類……………………………........ 7 2-5-2稀土元素在表面改質的相關研究…………….... 7 2-6 被覆添加之稀土元素的特性……………………….... 11 2-7 各種製程參數對被覆層硬度之影響……………… 12 2-8被覆層強化機構……………………………………..... 13 2-9 磨耗機構…………………………………………….... 15 2-10 摩擦理論…………………………………………….. 20 第三章 實驗方法與步驟………………………………………… 22 3-1 實驗步驟…………………………………………….... 22 3-2 試片製作…………………………………………….... 22 3-2-1基材的製作…………………………………….... 22 3-2-2被覆材料的製作……………………………….... 22 3-2-3磨耗試片的製作……………………………….... 23 3-3 氬銲被覆方法……………………………………….... 24 3-3-1被覆試片的校正………………………………… 24 3-3-2氬銲被覆參數…………………………………… 24 3-3-3 熔填材料的成份比例………………..………… 24 3-4 被覆層機械性質測試……………………………… 25 3-5 被覆層顯微組織的觀察與成份分析………………… 25 3-6 磨耗試驗……………………………………………… 25 3-6-1磨耗試驗之條件………………………………… 25 3-6-2磨耗量的量測與計算…………………………… 26 3-6-3磨耗表面的觀察………………………………… 27 3-6-4磨耗及分析儀器設備之介紹…………………… 27 3-6-4-1 磨耗試驗之儀器………………………... 27 3-6-4-2 分析儀器之介紹………………………... 28 3-7被覆粉末觀察…………………………………………. 28 第四章 結果與討論………………………………………… 30 4-1 被覆層的基本結構分析……………………………… 30 4-2 被覆層顯微組織與成份分析………………………… 32 4-3稀土元素對被覆層硬度分佈之影響…………………. 37 4-4不同被覆層的磨耗行為分析…………………………. 38 4-4-1 SKD61模具鋼基材的耐磨耗能力評估……… 38 4-4-2 SKD61模具鋼基材的磨耗分析……………… 39 4-4-3 WB及WB添加稀土元素被覆層的耐磨耗能力評估....41 4-4-4 WB及WB添加稀土元素被覆層的磨耗分析…. 42 第五章 結論與建議………………………………………………49 5-1 結論…………………………………………………… 49 5-2 建議…………………………………………………… 49 參考文獻……………………………………………………………51 表索引 表2.1 硼化鎢(WB)成份分析(wt.%) ………………………………... 56 表2.2 硼化鎢(WB)物理化學性質【13】…………………………... 56 表2.3 稀土用途【15】…………………………................................ 57 表3.1 模具鋼與304不銹鋼管的主要化學成份.................................. 58 表3.2 氬銲被覆參數…………………………................................... 58 表3.3 被覆粉末配製之成份百分比(wt.%) .................................... 59 表3.4 磨耗試驗參數…………………………................................... 59 圖索引 圖2.1 各種不同表面鍍層的方法【2】…………………………… 60 圖2.2 不同表面被覆層的厚度【2】……………………………… 60 圖2.3 利用不同表面處理方法在鋼基材表面可形成的厚度與硬度的關係【3】…………………………………………….. 61 圖2.4 影響鍍層表面材料性質的因素【2】……………………… 61 圖2.5 (a)熔池凝固期間對於顯微結構形成的影響因素;(b)平板狀;(c)細胞狀;(d)細胞狀樹枝晶;(e)柱狀樹枝晶;(f)等軸狀樹枝晶【12】……………………………………………. 62 圖2.6 表面張力對於熔池流動的影響(a)表面張力係數為正,導致熔池表面流動朝向內部,伴隨熔池中央熔融金屬往下流動,此時熔池中央隆起;(b)表面張力係數為負,導致熔池表面流動朝向外部,伴隨熔池中央熔融金屬往兩側流動,此時熔池中央平整【12】…………………………… 63 圖2.7 磨耗機構相互影響的關係【2】…………………………… 63 圖2.8 刮磨磨耗的機構:(a)微切削;(b)破裂;(c)疲勞;(d)顆粒被拔出【43】…………………………………………………. 64 圖2.9 黏著磨耗(adhesive wear)的機構【44】…………………… 64 圖2.10 氧化磨耗的機構:(a)真實接觸表面;(b)接觸表面產生氧化膜;(c)氧化膜成長及延伸;(d)氧化膜破裂形成磨屑【49】…………………………………………………….. 65 圖2.11 硬質第二相的平均粒徑小於或等於氧化膜臨界厚度(a)硬的顆粒被氧化膜包圍住;(b)硬的顆粒隨氧化膜破裂形成磨屑【49】……………………………………………… 66 圖2.12 硬質顆粒的平均粒徑高於氧化膜臨界厚度(a)顆粒部分被氧化膜包住;(b)氧化膜破裂;(c)硬質顆粒於對磨件表面產生刮磨;(d)硬質顆粒破裂;(e)硬質顆粒被拔出【49】.................................................................................... 67 圖2.13 硬質顆粒的平均粒徑高於氧化膜臨界厚度非常多(a)硬質顆粒大部分在氧化膜之外;(b)氧化膜破裂不會對硬質顆粒產生影響【49】............................................................ 68 圖3.1 實驗流程圖............................................................................ 69 圖3.2 磨耗上、下試片尺寸圖(a)滑動上試片為片狀被覆試片; (b)圓盤狀固定下試片為52100軸承鋼。尺寸單位: mm 70 圖3.3 氬銲表面被覆示意圖............................................................ 71 圖3.4 被覆試片磨痕表面的示意圖................................................ 72 圖3.5 迴轉式磨耗試驗示意圖........................................................ 72 圖3.6 被覆粉末的形態 (a)WB陶瓷粉末的形狀為多角狀近似球形;(b)La2O3稀土元素的形狀為多角狀........................... 73 圖4.1 各種WB被覆試片之橫截面形態 (a)WB被覆層;(b)WB-1.5%La2O3被覆層; (c)WB-3.0%La2O3被覆層;(d)WB-4.5%La2O3被覆層....... 74 圖4.2 WB被覆層經過研磨拋光後表面利用5%Nital腐蝕液腐蝕30分鐘後的顯微組織(a)被覆層與基材界面間的顯微組織;(b)局部放大(a)中的柱狀樹枝晶;(c)局部放大(a)中與橫截面垂直的柱狀樹枝晶................................................ 75 圖4.3 WB被覆層內組織成份分析(a)樹枝狀晶與輻射狀析出物的形態;(b)樹枝狀晶之EDS分析;(c)輻射狀析出物之EDS分析............................................................................... 76 圖4.4 WB被覆試片之EPMA分析(a)合金元素之Line-scan (b) 合金元素之Color Mapping.................................................. 78 圖4.5 WB-1.5%La2O3被覆層經過研磨拋光後表面利用5%Nital腐蝕液腐蝕30分鐘後的顯微組織(a)被覆層與基材界面間的顯微組織;(b)局部放大(a)中的柱狀樹枝晶、輻射狀析出物、葉脈狀析出物........................................................ 79 圖4.6 WB-1.5%La2O3被覆層內組織成份分析(a)柱狀樹枝晶、輻射狀析出物、葉脈狀析出物的形態;(b) 柱狀樹枝狀晶之EDS分析;(c)輻射狀析出物之EDS分析(d)葉脈狀析出物之EDS分析................................................................... 81 圖4.7 WB-1.5%La2O3被覆試片之EPMA分析(a)合金元素之Line-scan (b)合金元素之Color Mapping............................. 83 圖4.8 WB-3.0%La2O3被覆層經過研磨拋光後表面利用5%Nital腐蝕液腐蝕30分鐘後的顯微組織(a)被覆層與基材界面間的顯微組織;(b)局部放大(a)中的柱狀樹枝晶、輻射狀析出物、葉脈狀析出物........................................................ 84 圖4.9 WB-3.0%La2O3被覆層內組織成份分析(a)柱狀樹枝晶、輻射狀析出物、葉脈狀析出物的形態;(b) 柱狀樹枝狀晶之EDS分析;(c)輻射狀析出物之EDS分析;(d)葉脈狀析出物之EDS分析;(e)交錯之輻射狀析出物形態;(f) 輻射狀析出物之EDS分析.......................................................... 86 圖4.10 WB-3.0%La2O3被覆試片之EPMA分析(a)合金元素之Line-scan (b)合金元素之Color Mapping............................. 88 圖4.11 WB-4.5%La2O3被覆層經過研磨拋光後表面利用5%Nital腐蝕液腐蝕30分鐘後的顯微組織(a)被覆層與基材界面間的顯微組織;(b)局部放大(a)中的柱狀樹枝晶、輻射狀析出物、葉脈狀析出物........................................................ 89 圖4.12 WB-4.5%La2O3被覆層內組織成份分析(a)柱狀樹枝晶、輻射狀析出物、葉脈狀析出物的形態;(b) 柱狀樹枝狀晶之EDS分析;(c)輻射狀析出物之EDS分析;(d)葉脈狀析出物之EDS分析................................................................... 91 圖4.13 WB-4.5%La2O3被覆試片之EPMA分析(a)合金元素之Line-scan (b)合金元素之Color Mapping............................. 93 圖4.14 四種被覆層沿厚度方向之硬度分佈,被覆條件銲接電流 =100A、銲接運行速度=8 cm/min........................................ 94 圖4.15 SKD61模具鋼基材在不同接觸應力試驗條件下的磨耗量與滑動速度的變化情形。試驗條件:乾磨耗、室溫、滑動距離=1131.12m.................................................................. 95 圖4.16 SKD61模具鋼基材在滑動速度為0.942m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀塑性流的形態;(b)局部黏著磨耗形態(傾斜60o);(c)磨耗軌跡尾端產生塑性堆積的現象;(d)摩擦係數的變化............................................................................................ 96 圖4.17 SKD61模具鋼基材在滑動速度為0.942m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀塑性流的形態; (b)摩擦係數的變化..................... 97 圖4.18 SKD61模具鋼基材在滑動速度為0.942m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)剝層磨耗表面形態;(b) 剝層磨耗表面形態(傾斜60o);(c)摩擦係數的變化............................................................... 98 圖4.19 SKD61模具鋼基材在滑動速度為1.884m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)在氧化膜的垂直滑動方向產生裂縫;(b)摩擦係數的變化;(c)EDS成份分析........................................................... 99 圖4.20 SKD61模具鋼基材在滑動速度為1.884m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)局部地區產生黏著形態;(b)磨耗軌跡尾端產生塑性堆積的現象;(c)摩擦係數的變化............................................... 100 圖4.21 SKD61模具鋼基材在滑動速度為1.884m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)破裂之剝層磨耗形態;(b)圖(a)之局部放大剝層磨耗形態(傾斜60o);(c)局部地區產生多重剝層磨耗形態;(d)摩擦係數的變化........................................................................ 101 圖4.22 WB添加不同比例稀土元素之被覆試片,在不同接觸應力試驗條件下的磨耗量與滑動速度的變化情形。試驗條件:乾磨耗、室溫、滑動距離=1131.12m(a)固定滑動速度為0.942m/s;(b)固定滑動速度為1.884m/s......................... 102 圖4.23 WB被覆試片在不同磨耗條件下的磨耗結果..................... 103 圖4.24 WB被覆試片在滑動速度為0.942m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)黏著磨耗形態;(b)摩擦係數的變化................................... 103 圖4.25 WB被覆試片在滑動速度為0.942m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)氧化膜形態並且夾雜強化的析出相;(b)摩擦係數的變化…………………………………………………………… 104 圖4.26 WB被覆試片在滑動速度為0.942m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)局部氧化膜形態;(b)摩擦係數的變化................................. 104 圖4.27 WB被覆試片在滑動速度為1.884m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)磨耗表面形態;(b)摩擦係數的變化;(c)EDS分析輻射狀析出物.................................................................................... 105 圖4.28 WB被覆試片在滑動速度為1.884m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)氧化膜磨耗表面形態;(b)摩擦係數的變化......................... 105 圖4.29 WB被覆試片在滑動速度為1.884m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)氧化膜磨耗表面形態;(b)摩擦係數的變化......................... 106 圖4.30 WB-1.5%La2O3被覆層試片被覆試片在不同磨耗條件下的磨耗結果............................................................................ 106 圖4.31 WB-1.5%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)輻射狀析出物與葉脈狀析出物表面形態;(b)摩擦係數的變化................................................................................ 107 圖4.32 WB-1.5%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)輻射狀析出物與葉脈狀析出物表面形態;(b)摩擦係數的變化................................................................................ 107 圖4.33 WB-1.5%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)磨耗表面形態;(b)摩擦係數的變化............................ 108 圖4.35 WB-1.5%La2O3被覆試片在滑動速度為1.884m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀磨耗表面形態;(b)摩擦係數的變化................ 109 圖4.36 WB-1.5%La2O3被覆試片在滑動速度為1.884m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)氧化膜剝落磨耗表面形態;(b)摩擦係數的變化............................................................................................ 109 圖4.37 WB-3.0%La2O3被覆層試片被覆試片在不同磨耗條件下的磨耗結果............................................................................ 110 圖4.38 WB-3.0%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)磨耗表面形態;(b)摩擦係數的變化............................ 110 圖4.39 WB-3.0%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)磨耗表面形態;(b)摩擦係數的變化........................... 111 圖4.40 WB-3.0%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)強化相顯現表面形態;(b)摩擦係數的變化................ 111 圖4.41 WB-3.0%La2O3被覆試片在滑動速度為1.884m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀磨耗表面形態;(b)摩擦係數的變化................ 112 圖4.42 WB-3.0%La2O3被覆試片在滑動速度為1.884m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀磨耗表面形態;(b)摩擦係數的變化................ 112 圖4.43 WB-3.0%La2O3被覆試片在滑動速度為1.884m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀磨耗表面形態;(b)摩擦係數的變化................ 113 圖4.44 WB-4.5%La2O3被覆層試片被覆試片在不同磨耗條件下的磨耗結果............................................................................ 113 圖4.45 WB-4.5%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)磨耗表面形態;(b)摩擦係數的變化............................ 114 圖4.46 WB-4.5%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀磨耗表面形態;(b)摩擦係數的變化................ 114 圖4.47 WB-4.5%La2O3被覆試片在滑動速度為0.942m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)黏著磨耗表面形態;(b)摩擦係數的變化.................... 115 圖4.48 WB-4.5%La2O3被覆試片在滑動速度為1.844m/s、接觸應力為320MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀磨耗表面形態;(b)摩擦係數的變化................ 115 圖4.49 WB-4.5%La2O3被覆試片在滑動速度為1.844m/s、接觸應力為370MPa與滑動距離為1131.12m磨耗試驗條件下的(a)磨耗表面形態;(b)摩擦係數的變化............................ 116 圖4.50 WB-4.5%La2O3被覆試片在滑動速度為1.844m/s、接觸應力為415MPa與滑動距離為1131.12m磨耗試驗條件下的(a)魚鱗狀磨耗表面形態;(b)摩擦係數的變化................ 116

參考文獻
1. K. N. Strafford, P. K. Datta, J. S. Gray,Surface Engineering Practive, 1990.
2. K. Holmberg, A. Matthews, Coatings tribology, Amsterdam, Elsevier, 1994.
3. I. M. Hutchings, Friction and wear of engineering materials, Boca Raton, CRC Press, 1992.
4. J. W. Giachino,Welding skills and practices,1986.
5. G. B. Kenneth,Surface Engineering for wear Resistance.
6. H. G. Fan, H. L. Tsai, S. J. Na, Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding, International Journal of Heat and Mass Transfer 44,2001, 417-428.
7. Y. C. Lin, S. W. Wang, Wear behavior of ceramic powder cladding on an S50C steel surface, Tribology International 36,2003,1-9.
8. 林原慶、李明奇、王世衛 , 「中碳鋼表面被覆SiC粉末耐磨耗性能之研究」 中國機械工程學會第十六屆學術研討會論文集 , 第 507-514 頁 , 新竹、清大,1999.
9. S. W. Wang, Y. C. Lin, Y. Y. Tsai, The effects of various ceramic-metal on wear performance of clad layer, the 6th Asia Pacific Conference on Materials Processing (6th APCMP), Taipei, 2003.
10. 林原慶、王世衛、蔡益元 , 合金元素對中碳鋼表面被覆陶瓷粉末耐磨耗性能之影響 中國機械工程學會第十七屆學術研討會論文集 , 第四冊製造與材料 , 789-795 , 高雄、高雄第一科技大學,2000.
11. 伍凱義 , 鑄鐵表面被覆耐磨耗材料之研究 , 國立台灣科技大學碩士論文 ,2000.
12. J. F. Lancaster, Metallurgy of welding, London, Chapman & Hall, 1993.
13. H. F. Brinson, Engineered materials handbook, Vol. 4, ASM International, Metals Park, Ohio, 1987.
14. K. A. Khor, L. G. Yu, G. Sundararajan, Formation of hard tungsten boride layer by spark plasma sintering boriding, Thin Solid Films 478,2005, 232-237.
15. 錢景常譯 , 「稀土族十五個元素」 , 原子能文庫/鄭振華 主編1969.

16.
W. Maocai, Y. Yonggen, W. Weitao, Z. Jingpu, Effect of Yttrium on microstructure and hot corrosion performance of laser clad Co-Based alloy, Journal of the Chinese Rare Earth Society (English Edition) ,1993, 278-282.
17. W. Weitao, Microstructure of laser-surface-alloyed cast iron with Cr-Al-Y alloy, Surface & Coatings Technology 72 ,1995, 181-188.
18. Y. Yongqiang, Existent forms and effects of yttrium in laser claddings of MCrAlY, Journal of South China University of Technology (Natural Science) 26 ,1998, 65-68.
19. Y. Yongqiang, Y. Baohe, Z. Zhihong, Q. Changqing, W. Xiaoguo, Effect of rare-earth element in laser cladding high temperature alloy, Proceedings of SPIE - The International Society for Optical Engineering, 3862,1999, 438-442.
20. C. Xiang, J. Hong, Effects on structure and abrasion resistance of GCr15 steel by surface gas-phase RE diffused permeation with laser melting solidification, High Technology Letters 6 ,2000,29-32.
21. Q. B. Zhang , M. L. Sun , X. G. Wei , Y. M. Zhu ,Rare earth elements modification of laser-clad nickel-based alloy coatings, Applied Surface Science, v 174, n 3-4, 2001, 191-200.
22. J. Hong, C. Xiang, Z. Liancheng, Influence of surface gas-phase rare earth permeation plus laser melting solidification on microstructure and corrosion resistance of pure iron, Journal of Rare Earths 20,2002, 120-123.
23. K.L Wang, Q.B. Zhang, M.L. Sun, X.G. Wei, Microstrural characteristics of laser clad coatings with rare earth metal elements, Journal of Processing Technology 139,2003,448-452.
24. Y. S. Tian, C. Z. Chen, L. X. Chen, Q. H. Huo, Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique, Scripta Materialia 54,2006, 847-852.
25. Z. Li , Effects of rare-earth element on structure and abrasion resistance of alloy powder spray welding coating, Cailiao Gongcheng/Journal of Materials Engineering, n 3, 1993, p 9-12.
26. L. Jiajun, Z. Baoliang, Effect of rare-earth elements on the wear resistance of iron base thermal spray-welding coating and its mechanism, Mocaxue Xuebao/Tribology, 14 ,1994, 298-305.
27. K. L. Wang, Y. M. Zhu, Q. B. Zhang, M. L. Sun, Effect of rare-earth cerium on the microstructure and corrosion resistance of laser cladded nickel-base alloy coatings, Journal of Materials Processing Technology 139 ,2003, 448-452.
28. Zhenyu Zhang, Zhiping Wang, Bumv Liang, Peiqing La, Effects of CeO2 on friction and wear characterisitics of Fe-Ni-Cr alloy coatings, Tribology International 39,2006, 971-978.
29. Limin Zhang, Dongbai Sun, Hongying Yu, Characteristics of plasma cladding Fe-based alloy coatings with rare earth metal elements, Materials Science and Engineering A 452-453,2007,619-624.
30. Wang Kunlin, Zhang Qingbo, Wei Xingguo, Rare-erth La2O3 modification of laser-clad coatings. JOURNAL OF MATERIALS SCIENCE 33,1998, 3573 –3577.
31. Xingong Wang, Min Zhang, Zengda Zou, Shiyao Qu, Microstructure and properties of laser clad TiC+NiCrBSi+rare earth composite coatings , Surface and Coatings Thechnology 161,2002,195-199.
32. X. H. Wang, Z. D. Zou, S. L. Song, S. Y. Qu, Modifying effect of rare earth Fe-C-Cr-Si-B laser clad coatings, Journal of Materials Science Letters 22,2003, 713-715.
33. Xiu-Bo Liu, Rong-Li Yu, Effects of La2O3 on microstructure and wear properties of laser clad /Cr7C3/TiC composite coatings on TiAl intermatallic alloy, Materials Chemistry and Physics 101,2007, 448-454.
34. Y. T. Pei , J. H. Ouyang,T. C. Lei,Y. Zhou , Microstructure of laser-clad SiC-(Ni alloy) composite coating , Materials Science and Engineering A,194,1995,219-224.
35. D. W. Zhang , T. C. Lei , F. J. Li , Laser cladding of stainless steel with Ni-Cr3C2for improved wear performance, Wear , 251,2001,1372-1376.
36. C. Tassin , F. Laroudie , M. Pons ,L. Lelait , Improvement of wear resistance 316L stainless steel by laser surface alloying surface And Coating Technology. ,80,1996,207-210.
37. 劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚 , 工程材料科學 , 全華科技圖書股份有限公司 ,1996.
38. G. E. Dieter, Mechanical metallurgy, London, McGraw-Hill, 1988.
39. Y. T. Pei , J. H. Ouyang,T. C. Lei,Y. Zhou, Microstructure of laser-clad SiC-(Ni alloy) composite coating, Materials Science and Engineering A,194,1995,219-224.
40. D. W. Zhang , T. C. Lei , F. J. Li , Laser cladding of stainless steel with Ni-Cr3C2 for improved wear performance,Wear , 251,2001,1372-1376.
41. 李明奇,製程參數對中碳鋼表面被覆SiC粉末耐磨耗性能之影響,國立台灣科技大學碩士論文,1998.
42. H. Sin, N. Saka, N. P. Suh, Abrasive wear mechanisms and the grit size effect, Wear 55 (1) ,1979, 163-190.
43. G. W. Stachowiak, A. W. Batchelor, Engineering tribology, Amsterdam, Elsevier, New York ,1993.
44. C. Horst, Tribology : a systems approach to the science and technology of friction, lubrication and wear, Amsterdam, Elsevier Scientific Pub. Co., New York ,1978.
45. V. V. Pokropivny, V. V. Skorokhod, A. V. Pokropivny, Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface, Materials letters 31 ,1997, 49-54.
46. D. Markov, D. Kelly, Mechanisms of adhesion-initiated catastrophic wear: pure sliding, Wear 239,2000,189-210.
47. T. F. J. Quinn, J. L. Sullivan, D. M. Rowson, Origins and development of oxidational wear at low ambient temperatures, Wear 94,1984, 175-191.
48. T. F. J. Quinn, W. O. Winer, An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire, Journal of Tribology 109 ,1987, 315-320.
49. M. Vardavoulias, The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials, Wear 173 ,1994, 105-114.
50. T. F. J. Quinn, Computional methods applied to oxidational wear, Wear 199 ,1996, 169-180.
51. T. F. J. Quinn, Oxidational wear modeling part Ⅲ. The effects of speed and elevated temperatures, Wear 216 ,1998, 262-275.
52. T. F. J. Quinn, The oxidational wear of low alloy steels, Tribology International 35 ,2002, 691-715.
53. J. M. Guilemany, J. M. Miguel, S. Vizcaino, F. Climent, Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying, Surface and Coatings Technology 140,2001, 141-146.
54. H. So, The mechanism of oxidational wear, Wear 184,1995, 161-167.
55. N. P. Suh, The delamination theory of wear, Wear 25 ,1973, 111-124.
56 S. Jahanmir, N. P. Suh, E. P. Abrahamson, Microscopic observations of the wear sheet formation by delamination, Wear 28,1974, 235-249.
57. Bhushan , Bharat , Handbook of Tribology , McGraw-Hill , USA , 1991.
58. Donald R. Askeland , The science and engineering of materials,1994.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE