簡易檢索 / 詳目顯示

研究生: 粘庭愷
Ting-Kai Nian
論文名稱: 實現在SoC−FPGA 之低複雜度影像資料不連續性偵測方法
A Low Complexity Detection Method for Video Data Discontinuity Implemented on SoC-FPGA
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 阮聖彰
Shanq-Jang Ruan
吳晉賢
Chin-Hsien Wu
林昌鴻
Chang Hong Lin
林淵翔
Yuan-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 56
中文關鍵詞: 影像品質凍結偵測影像串流嵌入式系統
外文關鍵詞: SoC-FPGA, Freezing detection
相關次數: 點閱:234下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

對於影像串流高品質的影像對於即時性的影像處理是非常重要的一個環節。傳輸的過程中,種種因素會導致影像內容丟失,例如傳輸型態改變、傳輸中遺失資料,特別是在資料切換時。資料切換一般發生在影像訊號的切換,這可能導致影像的數據在記憶體或緩衝器中不連續性進而導致影像偏移。針對這樣的議題,目前參考文獻的解決方式採用前後張影像幀差異去檢測異常的影像現象,但目前這樣的演算法可能消耗很多硬體資源和記憶體空間。本論文提出一種運用影像傳輸協定的特性,利用解碼影像封包所得到像素點,並採用像素點預測方式,並將檢測方式應用於影像系統上。所提出方法及影像系統架構實現於SoC-FPGA晶片平台,此開發平台包括DDR3 ram,閃存和交換接口。實驗結果表明,所提出的方法在正確率高達99%,並節省更多邏輯元件的使用與減少影像資料於記憶體的占用。


Image/video processing in real-time is always in high demand for the quality of video. There are several factors which cause the loss of the video content, such as the type of transmission, missing data and especially data switch. Data switch generally occurs in the alternation of the video signal, which can cause the discontinuity of data during the video data stored in buffer or memory. The current method which adopts frame difference for detecting this issue may consume many resources and memory footprint. This paper presents a method which uses the video pixel prediction to detect the freezing event. The method is implemented with a video system which employs the System-on-chip (SoC) architecture with Field Programmable Gate Array (FPGA) and other components including DDR3 ram, flash, and exchange interfaces as the main processing platform that prevents this problem through freezing detection. The result of evaluation shows that the accuracy of the proposed method is above 99%, in terms of saving more logic usage and reducing the footprint of the memory on the video system.

Abstract in Chinese-----------------------------III Abstract in English-----------------------------XII Acknowledgements--------------------------------XIII Contents----------------------------------------XV List of Tables----------------------------------XVIII List of Figures---------------------------------XIX Abbreviations-----------------------------------XXI 1 Introduction----------------------------------1 1.1 The Essentials of Video Processing----------1 1.2 Detection of the Work-----------------------3 1.3 Organization of This Thesis-----------------4 2 Related Works---------------------------------6 2.1 Video Data Format---------------------------6 2.2 Freezing Detection Algorithm----------------8 2.3 Hardware Design-----------------------------9 3 Proposed Method-------------------------------10 3.1 Data Flow Architecture Design --------------12 3.2 Video Decoder-------------------------------14 3.3 Freezing Detection--------------------------16 3.3.1 Coordinate Prediction---------------------17 3.3.2 Coordinate Difference Judgment------------17 3.3.3 Matching Controller-----------------------18 4 Experimental Results--------------------------19 4.1 Experimental Setup--------------------------19 4.2 Performance of Freezing Detection-----------21 4.3 Resource Usage------------------------------24 4.4 Discussion----------------------------------27 5 Conclusions-----------------------------------28 References--------------------------------------29

[1] F. Dorbian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica and H.Zhang, ”Understanding the Impact of Video Quality on User Engagement,” in 2011 ACM Special Interest Group Data Communication Conf., Toronto, 2011,pp. 362-373.
[2] Y. Shuang, W. Yifan and M. Fang, ”The comparison and improvement of data processing methods in video quality subjective assessment,” in 2014 7th Int. Congr. Image and Signal Processing, Dalian, 2014, pp. 612-616.
[3] L. Karam, T. Ebrahimi, S. Hemami, T. Pappas, R. Safranek, Z. Wang and A.Watson, ”Introduction to the special issue on visual media quality assessment,”IEEE J. Sel. Topics Signal Process., vol. 3, no. 2, pp. 189–192, Apr. 2009.
[4] K. Seshadrinathan, R. Soundararajan, A. C. Bovik and L. K. Cormack, ”Study of Subjective and Objective Quality Assessment of Video,” IEEE Trans. Image Process., vol. 19, no. 6, pp. 1427–1441, Jun. 2010.
[5] Q. Huynh-Thu and M. Ghanbari, ”No-reference temporal quality metric for video impaired by frame freezing artefacts,” in 2009 16th IEEE Int. Conf. Image Processing, Cairo, 2009, pp. 2221-2224.
[6] Y. Nagai, T. Okamawari and T. Fujii, ”A novel streaming method using QoS control function of LTE to prevent video freezing,” 2016 IEEE Wireless Communication and Networking Conf., 2016 © IEEE. doi: 10.1109/WCNC. 2016.7564971.
[7] S. Chien, S. Ma and L. Chen, ”Efficient moving object segmentation algorithm using background registration technique,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 7, pp. 577–586, Aug. 2002.
[8] J. Li, T. Xu and K. Zhang, ”Real-Time Feature-Based Video Stabilization on FPGA,” IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 4, pp. 907–919, Apr. 2017.
[9] C. Stauffer and W. Grimson, ”Adaptive background mixture models for realtime tracking,” in 1999 IEEE Computer Vision and Pattern Recognition Conf., Fort Collins, USA, 1999, pp. 246-252.
[10] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. S. Davis, ”Realtime foreground-background segmentation using codebook Model,” Real-Time Imag., vol. 11, pp. 172–185, 2005.
[11] P. Li and D. J. Lilja, ”A low power fault-tolerance architecture for the kernel density estimation based image segmentation algorithm,” 2011 IEEE int. Conf. Application-specific Systems, Architectures and Processors, 2011 © IEEE. doi:
10.1109/ASAP.2011.6043264.
[12] Y. Xue, B. Erkin and Y. Wang, ”A Novel No-Reference Video Quality Metric for Evaluating Temporal Jerkiness due to Frame Freezing,” 2015 IEEE Tran. Multimedia, vol. 17, no. 1, pp. 134–139, 2015.
[13] Y. Yammine, E. Wige and F. Simmet, ”Blind frame freeze detection in coded videos,” in 2012 Picture Coding Symp., Krakow, 2012, pp. 341–344.
[14] V. Škobić, U. Marić and S. Tomić, ”Real time video freezing detection implementation on FPGA,” in 2016 24th Telecommunication Forum TELFOR, Belgrade, 2016, pp. 1-3.
[15] M. Alavi and D.E. Leidner, ”Knowledge Management and Knowledge Management Systems : Conceptual Foundations and Research Issues,” 2001 Manage. Inform. Syst. Quarterly, vol. 25, no. 1, pp. 107–136, 2001.
[16] P. Marwedel, ”Embedded System Design,” in New York: Springer-Verlag, 2006.
[17] P. Kumbhare and V. Krishna, ”Designing high-performance video systems in 7 series FPGAs with the AXI Interconnect,” Xilinx, Inc., San Jose, CA, USA, Appl. Note: 7 series FPGAs, XAPP741 (v1.3), Apr. 2014, pp. 1–24.
[18] ITU, ”ITU-R Recommendation BT.656,” ITU-T Rec., Dec. 2007.
[19] S. Pedre, S. Krajník, E. Todorovich and R. Borensztejn, ”Accelerating embedded image processing for real time: a case study,” J. of Real-Time Image Processing., 2013 © SpringLink. doi: 10.1007/s11554-013-0353-2.
[20] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M. Baas, ”A Scalable Dual-Clock FIFO for Data Transfers Between Arbitrary and Haltable Clock Domains,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 10, pp. 1125–1134, Oct. 2007.
[21] P. A. Laplante, ”Real-Time Systems Design and Analysis,” in NJ: IEEE Press, 1997.
[22] J. Davis and M. Goadrich, ”The Relationship between Precision-Recall and ROC Curves,” in Proc. 23rd ICML., 2006, pp. 233–240.

QR CODE