簡易檢索 / 詳目顯示

研究生: 童冠程
Guan-Cheng Tong
論文名稱: 選擇性三維線路直接成型
Directly selective molding of 3D circuits
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 郭俞麟
Yu-Lin Kuo
邱智瑋
Chih-Wei Chiu
黃信智
Hsin-Chih Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 120
中文關鍵詞: 無電鍍銅選擇性 金屬化三維成型
外文關鍵詞: Electroless Metal Deposition, selective plating, 3D printing
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無電鍍銅在基材上為產業界非常重要的應 用 。 然而,如何選擇性的無電鍍是目前需要探討的問題,在過去。前人通常將觸媒配置成墨水再用噴塗的方式在基材上做出選擇性圖型,而無電鍍過程通常需要先表面清潔,基材表面處理,接著敏化步驟與觸媒活化步驟,最後便能無電鍍銅。而傳統無電鍍銅方式不僅需要大量同時成本也是值得去探討的問題,因此,吾人利用將觸媒混入至基材的方式,結合 3D列印技術,不僅能達到選擇性線路的效果,成品的展現上也能達到三維結構之模型。
    本實驗為新型選擇性無電鍍 技術,在過去雷射直接成型技術為主要做為選擇性電路的主要製程方法。 然而,此法存在許 多缺點,一為雷射的高耗能與設備昂貴,二為雷射僅只能在表面做處理。 本實驗透過 3D列印的方式來改善 LDS製程無法完成的事情,並有以下幾個特點 : (1)可直接三維成型選擇性線路無結構上的限制 (2)可製造內線路製程,使無法透過雷射也能做到選擇性線路 (3)無雷射、無鈀製程大大地降低生產 成本。 透過此法所得到的選擇性電路可得到完整的銅層與良好的銅厚度。


    Electroless copper plating is an appropriate process in 3C products. However, how to selectively do the electroplating is a serious problem. At present, most of the procedures are preparing the catalysts into a solution and using inkjet way to make selected pattern. After electroless copper plating, the pattern has catalyst on it and can help reduce the copper layer. This method requires surface treatment, sensitization, activation, and finally can do electroless plating. These processes are not only trivial but also wasting time and increasing cost. Therefore, we study a new way to achieve selective electroless copper plating. This work establishes a manufacturing method by mixing additives. This method couples the advantages of dual-material fused deposition modeling (FDM) 3D printing and selective electroless plating. The method relies on the selective sensitization/activation and metallization of dual-material FDM 3D printed structure.
    This experiment is a new type of selective electroless plating technology. In the past, laser direct molding technology was mainly used as the main process method for selective circuits. However, lasers have high energy consumption and expensive equipment, and lasers can only be used for surface treatment. This experiment uses 3D printing to improve things that can't be done in the LDS process, and has the following characteristics: (1) Direct three-dimensional molding of selective circuits without structural restrictions (2) Manufacture internal circuit (3) Laser-free, palladium-free process greatly reduces production costs. The selective circuit obtained by this method can obtain a complete copper layer and good copper thickness.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 X 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 無電鍍製程應用 3 1-2-1 塑膠電鍍 3 1-2-2 多元合金鍍層 4 1-3 無電鍍銅製程 6 1-3-1 無電鍍銅製程沿革 6 1-3-2 行動裝置天線之無電鍍銅製程具體施行步驟 8 1-4 無電鍍鎳製程 12 1-4-1 無電鍍鎳製程沿革 12 1-4-2 行動裝置天線之無電鍍鎳製程具體施行步驟 13 1-5 研究動機與目的 15 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 X 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 無電鍍製程應用 3 1-2-1 塑膠電鍍 3 1-2-2 多元合金鍍層 4 1-3 無電鍍銅製程 6 1-3-1 無電鍍銅製程沿革 6 1-3-2 行動裝置天線之無電鍍銅製程具體施行步驟 8 1-4 無電鍍鎳製程 12 1-4-1 無電鍍鎳製程沿革 12 1-4-2 行動裝置天線之無電鍍鎳製程具體施行步驟 13 1-5 研究動機與目的 15 第二章 實驗原理與文獻探討 16 2-1 雷射直接成型技術(LDS) 16 2-2 3D列印技術 19 2-2-1模型建模 19 2-2-2列印 20 2-2-3 熔融沉積型(Fused deposition modeling,FDM) 21 2-2-4 光固化立體造型(Stereolithography,SLA) 22 2-2-5 數位光處理(Digital Light Processing,DLP) 23 2-2-6 選擇性雷射燒結技術(Selective Laser Sintering) 24 2-3 表面處理 26 2-3-1溶漲及化學蝕刻 26 2-3-2電漿及雷射蝕刻 26 2-4 無電電鍍銅之催化及應用 28 2-4-1無電電鍍銅液組成與特性 29 2-4-2無電電鍍銅液內反應及觸媒催化機制 32 2-5 錫鈀膠製程及其他活化液製程及原理 36 2-6 非鈀系統觸媒 38 2-6-1 銀奈米觸媒於無電電鍍銅之催化機制 39 2-6-2 奈米銀之合成及其在無電電鍍銅上之應用 39 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 X 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 無電鍍製程應用 3 1-2-1 塑膠電鍍 3 1-2-2 多元合金鍍層 4 1-3 無電鍍銅製程 6 1-3-1 無電鍍銅製程沿革 6 1-3-2 行動裝置天線之無電鍍銅製程具體施行步驟 8 1-4 無電鍍鎳製程 12 1-4-1 無電鍍鎳製程沿革 12 1-4-2 行動裝置天線之無電鍍鎳製程具體施行步驟 13 1-5 研究動機與目的 15 第二章 實驗原理與文獻探討 16 2-1 雷射直接成型技術(LDS) 16 2-2 3D列印技術 19 2-2-1模型建模 19 2-2-2列印 20 2-2-3 熔融沉積型(Fused deposition modeling,FDM) 21 2-2-4 光固化立體造型(Stereolithography,SLA) 22 2-2-5 數位光處理(Digital Light Processing,DLP) 23 2-2-6 選擇性雷射燒結技術(Selective Laser Sintering) 24 2-3 表面處理 26 2-3-1溶漲及化學蝕刻 26 2-3-2電漿及雷射蝕刻 26 2-4 無電電鍍銅之催化及應用 28 2-4-1無電電鍍銅液組成與特性 29 2-4-2無電電鍍銅液內反應及觸媒催化機制 32 2-5 錫鈀膠製程及其他活化液製程及原理 36 2-6 非鈀系統觸媒 38 2-6-1 銀奈米觸媒於無電電鍍銅之催化機制 39 2-6-2 奈米銀之合成及其在無電電鍍銅上之應用 39 第三章 實驗步驟與研究方法 42 3-1 實驗規劃 42 3-2 實驗材料及藥品 45 3-3 實驗儀器與設備 46 3-4 實驗步驟 47 3-4-1塑膠混煉 47 3-4-2 3D列印選擇性圖形 48 3-4-3 表面處理 49 3-4-4 觸媒活化 49 3-4-5 無電鍍銅 50 3-4-6 無電鍍鎳 50 3-5 儀器原理 52 3-5-1微型混煉機 52 3-5-2 FDM 3D列印機 54 3-5-3場發射掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 55 3-5-4 X光繞射分析儀(X ray Diffraction Spectrometer, XRD) 57 3-5-5 X光螢光光譜儀(X-ray Fluorescence Measuring, XRF) 59 3-5-6 X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 61 3-5-7 拉伸試驗測試 63 3-5-8粗糙度輪廓儀 68 3-5-9石英晶體微量天平 69 3-5-10百格測試 71 第四章 結果與討論 72 4-1 ABS塑膠混合不同比例AgNO3 72 4-1-1 無電鍍成品圖 72 4-1-2 電子顯微鏡影像圖 74 4-1-3 拉伸強度測試 77 4-2 酸蝕刻表面處理 79 4-2-1 酸蝕刻表面處理之電子顯微鏡影像圖 79 4-2-2 不同酸蝕時間之鍍銅結果 81 4-3 觸媒活化 82 4-3-1不同觸媒活化時間之電子顯微鏡影像圖 82 4-3-2 不同觸媒活化時間之鍍銅成品圖 83 4-4 不同塑膠之無電鍍結果 84 4-4-1 聚乳酸(PLA) 85 4-4-2 丙烯腈-丁二烯-苯乙烯(ABS) 85 4-4-3 聚碳酸酯(PC) 86 4-4-4 聚對苯二甲酸環己烷二甲酯(PETG) 86 4-4-5 高抗衝聚苯乙烯(HIPS) 87 4-4-6 尼龍(nylon) 88 4-4-7 丙烯腈苯乙烯丙烯酸酯(ASA) 89 4-5 不同鍍銅時間之銅層厚度分析 91 4-5-1 銅層表面分析 91 4-5-2 銅層厚度分析 94 4-5-3 起鍍、增度銅厚度比較 97 4-5-4 導電度比較 99 4-5-5 表面粗糙度比較 101 4-5-6 水接觸角 103 4-6 二維與三維選擇性線路模型 104 4-6-1 二維平面選擇性線路 104 4-6-2 三維立體選擇性線路 106 4-6-3 插承式選擇性線路 107 4-6-4 基材與線路分界溢鍍觀察 108 4-7 元素分析 110 4-7-1 X光繞射分析(XRD) 110 4-7-2 X光電子能譜分析(XPS) 112 4-8 觸媒還原效率比較 113 4-9 無電鍍鎳 114 第五章 結論 115 第六章 參考資料 116

    [1] http://goo.gl/ZpWMpQ( Manufacturing Knowledge Center).
    [2] http://www.zgdiandu.com.cn/tech/show-42695.html(中國電鍍網).
    [3] http://goo.gl/GdSnyb(台灣Word).
    [4] H. Meyer, R.J. Nichols, D. Schroer, L. Stamp, Use of conducting polymers and colloids in the through hole plating of printed circuit boards. Electrochimica Acta, 39 (1994) 1325-1338.
    [5] Y. Shacham-Diamand, V. Dubin, M. Angyal, Electroless copper deposition for ULSI. Thin Solid Films, 262 (1995) 93-103.
    [6] J. Dugasz, A. Szasz, Factors affecting the adhesion of electroless coatings. Surface and Coatings Technology, 58 (1993) 57-62.
    [7] Wei Sha, K.G. Keong, Electroless Copper And Nickel-Phosphorus Plating, Woodhead, 2011.
    [8]http://remotefile.wtoqc.com/attachments/month_0709/20070922_c1a0e61e400c14e128b03dW7i0CF2yEC.pdf.
    [9]胡文彬, 難鍍基材的化學鍍鎳技術. 電鍍與環保, 125 (2002) 13-15.
    [10]K.G. Keong, W. Sha, S. Malinov, Hardness evolution of electroless nickel-phosphorus deposits with thermal processing. Surface and Coatings Technology, 168 (2003) 263-274.
    [11] W.C. Hong, Investigate Process of Electroless Nickel Plating and Study the Surface characteristics of Aluminum. Engineering in Mechanical Engineering, National Kaohsiung University of Applied Sciences (2008).
    [12] P.K. Yee, W.T. Wai, Y.F. Khong, in: 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA 2014, June 30, 2014 - July 4, 2014, Institute of Electrical and Electronics Engineers Inc., Singapore, Singapore, 2014, pp. 219-222.
    [13] https://kknews.cc/zh-tw/tech/lznz8ae.html (LDS技術及其產業鏈).
    [14]https://www.moneydj.com/KMDJ/Wiki/wikiViewer.aspx?keyid=badc0a6d-1fd5-43e1-925b-675006ea7b43.
    [15] The Application of 3D Printing Technology to Task-Oriented Multicopter UAV.
    [16] http://www.tpce.org.tw/tpce/ePaper/637-1.pdf (主流 3D 列印技術簡介 ).
    [17] https://kknews.cc/tech/5gm9lp6.html.
    [18] https://www.qts.tw/sla_3dprinting_experience_share/sla2863199.
    [19] https://kknews.cc/tech/4qbzl4x.html.
    [20]D. Hegemann, H. Brunner, C. Oehr, in: Ionizing Radiation and Polymers, September 21, 2002 - September 26, 2002, Elsevier, Sainte-Adele, QUE, Canada, 2003, pp. 281-286.
    [21] A. Paproth, K.J. Wolter, R. Deltschew, in: IEEE 56th Electronic Components and Technology Conference, May 30, 2006 - June 2, 2006, Institute of Electrical and Electronics Engineers Inc., San Diego, CA, United states, 2006, pp. 959-963.
    [22] H. Frerichs, J. Stricker, D.A. Wesner, E.W. Kreutz, Laser-induced surface modification and metallization of polymers. Applied Surface Science, 86 (1995) 405-410.
    [23] W. Pfleging, R. Adamietz, H.J. Bruckner, M. Bruns, A. Welle, in: Laser-based Micro- and Nanopackaging and Assembly, January 22, 2007 - January 24, 2007, SPIE, San Jose, CA, United states, 2007, pp. SPIE.
    [24] Y. Okinaka and T. Osaka, "Electroless deposition processes: fundamentals and
    applications," Advances in electrochemical science and engineering, vol. 2,
    93pp. 55-116, 2008.
    [25]陳學毓, "三維立體基材金屬化技術優化," 碩士論文,vol. 國立台灣科技大學, 2015.
    [26] J. Shu, B. Grandjean, and S. Kaliaguine, "Effect of Cu (OH) 2 on electrolesscopper plating," Industrial & engineering chemistry research, vol. 36, pp.1632-1636, 1997.
    [27] S. Jayalakshmi, P. Venkatesh, and P. BalaRamesh, "RECENT ADVANCES IN ELECTROLESS COPPER DEPOSITION–A REVIEW.".
    [28] C. Ryu, K.-W. Kwon, A. L. Loke, H. Lee, T. Nogami, V. M. Dubin, et al., "Microstructure and reliability of copper interconnects," IEEE transactions on electron devices, vol. 46, pp. 1113-1120, 1999.
    [29] A. Hung, "Electroless copper deposition with hypophosphite as reducing agent," Plating and surface finishing, vol. 75, pp. 62-65, 1988.
    [30] I. Ohno, O. Wakabayashi, and S. Haruyama, "Anodic oxidation of reductants in electroless plating," Journal of the electrochemical society, vol. 132, pp. 2323-2330, 1985.
    [31] E. Juzeliunas, H. W. Pickering, and K. G. Weil, "Electrochemical quartz crystal microgravimetry study of metal deposition from EDTA complexes," Journal of the Electrochemical Society, vol. 147, pp. 1088-1095, 2000.
    [32]M. Oita, M. Matsuoka, and C. Iwakura, "Deposition rate and morphology of electroless copper film from solutions containing 2, 2′-dipyridyl," Electrochimica Acta, vol. 42, pp. 1435-1440, 1997.
    [33]D. G. Kim, J. S. Bae, J. H. Lee, Y. D. Kim, and Y. M. Ahn, "Electrochemical kinetics study of electroless copper plating for electronics application," in Materials Science Forum, 2004, pp. 393-396.
    [34] Y. Fujiwara, Y. Kobayashi, T. Sugaya, A. Koishikawa, Y. Hoshiyama, and H. Miyake, "Adsorption promotion of Ag nanoparticle using cationic surfactants and polyelectrolytes for electroless Cu plating catalysts," Journal of the Electrochemical Society, vol. 157, pp. D211-D216, 2010.
    [35] Y. Shacham-Diamand, V. Dubin, and M. Angyal, "Electroless copper
    deposition for ULSI," Thin Solid Films, vol. 262, pp. 93-103, 1995.
    [36] M. Paunovic and M. Schlesinger, Fundamentals of electrochemical deposition vol. 45: john wiley & sons, 2006.
    [37] J. Van Den Meerakker, "On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces," Journal of Applied Electrochemistry, vol. 11, pp. 387-393, 1981.
    [38]Y. Shacham-Diamand and V. M. Dubin, "Copper electroless deposition
    technology for ultra-large-scale-integration (ULSI) metallization,"
    Microelectronic Engineering, vol. 33, pp. 47-58, 1997.
    [39] C.-L. Lee, Y.-L. Tsai, and C.-W. Chen, "Specific and mass activity of silver nanocube and nanoparticle-based catalysts for electroless copper deposition," Electrochimica Acta, vol. 104, pp. 185-190, 2013.
    [40]Palladium price. Available: https://www.cnyes.com/futures/flashchart/PA.html.
    [41] W.-P. Dow, G.-L. Liao, S.-E. Huang, and S.-W. Chen, "Modification of Cu nanoparticles with a disulfide for polyimide metallization," Journal of Materials Chemistry, vol. 20, pp. 3600-3609, 2010.
    [42] W.-P. Dow and T.-J. Huang, "Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst," Journal of Catalysis, vol. 147, pp. 322-332, 1994.
    [43] A. P. Reverberi, M. Salerno, S. Lauciello, and B. Fabiano, "Synthesis of copper nanoparticles in ethylene glycol by chemical reduction with vanadium salts," Materials, vol. 9, p. 809, 2016.
    [44] S. Shukla, S. Seal, Z. Rahaman, and K. Scammon, "Electroless copper coating of cenospheres using silver nitrate activator," Materials Letters, vol. 57, pp. 151-156, 2002.
    [45] A. Vaškelis, A. Jagminienė, L. Tamašauskaitė–Tamašiūnaitė, and R. Juškėnas, "Silver nanostructured catalyst for modification of dielectrics surface," Electrochimica acta, vol. 50, pp. 4586-4591, 2005.
    [46]楊英詩, "The Practicability of Ag-based Activator to Catalyze Electroless Copper Deposition," 碩士論文, vol. 國立清華大學, 2010.
    [47] Y.-J. Chao, C.-R. Liu, L.-S. Pan, and C.-L. Lee, "Activity of small silver nanocubes as activators for electroless copper deposition," Electrochimica Acta, vol. 183, pp. 20-26, 2015.
    [48] T. Tamai, M. Watanabe, and K. Matsukawa, "In‐situ formation of metal nanoparticle/acrylic polymer hybrid and its application to miniemulsion 97 polymerization," Journal of Applied Polymer Science, vol. 132, 2015.
    [49] A. Kaewvilai, R. Tanathakorn, A. Laobuthee, W. Rattanasakulthong, and A. Rodchanarowan, "Electroless copper plating on nano-silver activated glasssubstrate: A single-step activation," Surface and Coatings Technology, vol.319, pp. 260-266, 2017.
    [50] http://thuir.thu.edu.tw/retrieve/7825.
    [51] http://thuir.thu.edu.tw/retrieve/6805/090THU00063010-001.pdf.
    [52]https://3dmart.com.tw/tutorials/comparing-fff-sla-and-sls-technologies.
    [53] http://goo.gl/tzkXyt (Fischer).
    [54] http://www.chihong-ht.com.tw/pdf/ch-k-101.pdf (志虹熱處理有限公司).
    [55] http://www.chihong-ht.com.tw/pdf/ch-k-101.pdf.
    [56] http://goo.gl/0vWTH8(機械科、模具科製圖實習 第十章 基本工作圖).
    [57] Y.W. Chen, Design and Manufacturing of Metallized Plastic Three-dimensional Antenna for Mobile Devices. Department of Mechanical Engineering, National Taiwan University of Science and Technology (2014).
    [58] http://www.xpsfitting.com/2012/01/copper.html.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE