簡易檢索 / 詳目顯示

研究生: 沈孟翰
Meng-Han Shen
論文名稱: 探討添加二甲雙胍對提升厚朴酚載體對抑制人類口腔癌細胞之效果
The Antitumor Effects of Magnolol Drug Carriers with and without Metformin on Human Oral Cancer Cells
指導教授: 高震宇
Chen-Yu Kao
口試委員: 李曉屏
Shiao-Pieng Lee
蔡協致
Hsieh-Chih Tsai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 124
中文關鍵詞: 二甲雙胍厚朴酚口腔癌凋亡合併療法藥物傳輸系統
外文關鍵詞: metformin, magnolol, oral cancer, apoptosis, combination therapy, drug delivery system
相關次數: 點閱:436下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

二甲雙胍(Metformin, met)作為治療第二型糖尿病之藥物,近年研究指出具有協助抑制癌症之功效。厚朴酚(Magnolol, mag)為天然之中草藥萃取物,已知能誘導胃癌細胞、口腔癌鱗狀上皮細胞、肺癌細胞等多種癌症凋亡,但magnolol不易懸浮與分散性不佳之問題,限制其臨床應用性。為了改善magnolol之不易懸浮與分散性不佳之問題,本研究第一階段以PLGA作為magnolol之載體材料,製備微米顆粒(Mag-PLGA MPs)或奈米顆粒(Mag-PLGA NPs) ,透過MTT assay量測細胞存活率及caspase-3 ELISA kit分析細胞凋亡之程度,評估magnolol載體抑制人類牙齦上皮癌細胞株(OECM-1)之效果,並探討添加metformin對提升magnolol載體抑制OECM-1之影響。其次,以傳統雙重乳化法包覆親水性藥物metformin之效率極低,因此本研究第二階段嘗試以改良的雙重乳化法並調整不同之參數製備BSA-PLGA核殼微米顆粒(Core-shell microparticles),藉此提升親水性藥物metformin包埋效率。
研究結果顯示,mag-PLGA NPs對於抑制OECM-1之能力較mag-PLGA MPs佳。且magnolol載體添加metformin之合併療法對降低OECM-1存活率可達到加成之作用。另一方面,包覆metformin之BSA-PLGA核殼微米顆粒其包埋效率與一般雙重乳化之顆粒相比,最多可達88.9%的提升。由結果顯示,magnolol及metformin之合併療法及核殼包埋親水性metformin對於口腔癌之治療是具有潛力的。


Magnolol, a kind of traditional herbal medicines extract from the bark of the Magnolia, is known to induce cancer cell apoptosis, such as, gastric adenocarcinoma, lung cancer cell and oral squamous cell carinoma. Metformin is a common used first line oral drug for type two diabetes, it is recently been reported to inhibit cancer. In the present study, in order to improve the poor suspension property and low aqueous solubility of magnolol, we prepared the magnolol loaded micro or nano particles by using PLGA as drug carrier, and then investigated the antitumor effect of magnolol drug carrier with or without metformin on oral epidermoid carcinoma cells (OECM-1). MTT assay was performed to quantify cell viability, on the other hand, TUNEL assay and caspase-3 ELISA kit were used to evaluate the apoptosis of OECM-1. Further, we prepared and optimized the core-shell microparticles comprising of a hydrophilic core of BSA surrounded by hydrophobic shell of PLGA to improve the encapsulation efficiency(EE%) of hydrophilic drug metformin.
The result showed that the inhibitory effect to OECM-1 of mag-PLGA NPs is better than mag-PLGA MPs. And reduction of OECM-1 viability can reach additive manner when combinatorial treated with magnolol drug carrier and metformin. On the other hand, the EE% of BSA-PLGA microparticle can reach 88.9% higher than normal double emulsion particles. Combined treatment with magnolol drug carrier and metformin may induce programmed cell death of OECM-1; Core-shell microparticle can improve the encapsulation of metformin. These findings reveal a potential therapeutic strategy of oral cancer.

致謝 I 摘要 II Abstract III 第一章 緒論 1 第二章 文獻回顧 3 2.1. 口腔癌(Oral Cancer) 3 2.1.1. 口腔癌病理變化及臨床表徵 3 2.1.2. 口腔癌流行病學 3 2.1.3. 口腔癌治療 5 2.2. 厚朴酚(Magnolol) 7 2.2.1. Magnolol之藥物動力學 7 2.2.2. Magnolol抗癌機制 8 2.3. 二甲雙胍(Metformin) 10 2.3.1. Metformin之藥物動力學 11 2.3.2. 細胞攝取 11 2.3.3. Metformin抗癌機制 12 2.4. 合併療法( Combination therapy) 14 2.4.1. 不同藥物組合於癌症治療 14 2.4.2. 合併療法之策略 15 2.5. 藥物傳輸系統(Drug delivery system, DDS) 17 2.5.1. 藥物傳輸原理 17 2.5.2. 高分子藥物載體於癌症的治療 18 2.5.3. 聚乳酸-甘醇酸(Poly(D,L-lactide-co-glycolide), PLGA) 20 2.6. 親水性藥物包埋之策略 22 2.6.1. 核殼之奈米膠囊(core-shell nanocapsules) 23 2.6.2. 牛血清白蛋白(Bovine serum albumin, BSA) 24 2.6.3. 調整external water phase pH值 25 第三章 實驗材料與方法 26 3.1. 研究設計 26 3.1.1. 實驗理論 26 3.1.2. 實驗設計 26 3.1.3. 實驗架構與流程 28 3.2. 實驗材料與試劑及設備 29 3.2.1. 顆粒製備材料與試劑 29 3.2.2. 細胞培養之材料與試劑 29 3.2.3. 實驗分析儀器設備 30 3.3. 微米及奈米顆粒載體製備 31 3.3.1. 製備magnolol single emulsion MPs / NPs 31 3.3.2. 製備metformin double emulsion MPs 31 3.3.3. 製備metformin core-shell MPs 32 3.3.4. 製備 magnolol/metformin core-shell MPs 33 3.3.5. 製備 DiI-PLGA MPs / NPs 33 3.4. 顆粒載體特性分析 35 3.4.1. 顆粒藥物包覆效率評估 35 3.4.2. 表面型態觀察 36 3.4.3. 表面電位測量 36 3.4.4. 體外釋放效率評估 37 3.5. 體外細胞實驗 38 3.5.1. 細胞培養條件及培養液配製 38 3.5.2. 凍存細胞活化 39 3.5.3. 細胞培養液更換 39 3.5.4. 細胞繼代培養 39 3.5.5. 細胞計數 40 3.5.6. 細胞凍存 40 3.5.7. 細胞毒性MTT分析 40 3.5.8. 細胞吞噬顆粒分析 41 3.5.9. Caspase 3 activity 42 3.5.11. 統計學分析(Statistical Analysis) 42 第四章 結果 43 4.1. Magnolol單一乳化顆粒特性評估 43 4.1.1. 顆粒之表面型態分析 43 4.1.2. 藥物包覆效率評估 48 4.1.3. 表面電位(zeta potential)測定 50 4.1.4. 體外釋放效率評估 51 4.2. 細胞實驗 54 4.2.1. 細胞型態 54 4.2.2. 細胞毒性分析 58 4.2.3. 細胞胞吞分析 72 4.2.4. Caspase-3活性分析 74 4.3. 雙重乳化之核殼(Core-shell)微米顆粒特性評估 77 4.3.1. 顆粒之表面型態分析 78 4.3.2. 藥物包覆效率評估 85 4.3.3. 表面電位(zeta potential)測定 89 第五章 討論 91 5.1. Mag-PLGA MPs與mag-PLGA NPs之物化特性探討 91 5.2. 藥物傳輸系統對口腔癌細胞OECM-1之抑制能力探討 93 5.2.1. 細胞毒性評估 93 5.2.2. 細胞凋亡評估 100 5.3. 核殼顆粒提升metformin之包埋效率探討 102 第六章 結論 104 未來實驗建議 105 參考文獻 106

1. Mignogna, M.D., S. Fedele, and L.L. Russo, The World Cancer Report and the burden of oral cancer. European Journal of Cancer Prevention, 2004. 13(2): p. 139-142.
2. Su, C.-C., et al., Chronic exposure to heavy metals and risk of oral cancer in Taiwanese males. Oral Oncology, 2010. 46(8): p. 586-590.
3. Huang, C.-C., et al., Life expectancy and expected years of life lost to oral cancer in Taiwan: A nation-wide analysis of 22,024 cases followed for 10 years. Oral Oncology, 2015. 51(4): p. 349-354.
4. Broxterman, H.J. and N.H. Georgopapadakou, Anticancer therapeutics: "Addictive" targets, multi-targeted drugs, new drug combinations. Drug Resist Updat, 2005. 8(4): p. 183-97.
5. Greco, F. and M.J. Vicent, Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev, 2009. 61(13): p. 1203-13.
6. Evans, J.M.M., et al., Metformin and reduced risk of cancer in diabetic patients. BMJ : British Medical Journal, 2005. 330(7503): p. 1304-1305.
7. Zakikhani, M., et al., Metformin is an AMP Kinase-Dependent Growth Inhibitor for Breast Cancer Cells. Obstetrical & Gynecological Survey, 2007. 62(3): p. 182-183.
8. Funk, G.F., et al., Presentation, treatment, and outcome of oral cavity cancer: A national cancer data base report. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck, 2002. 24(2): p. 165-180.
9. Moon, S., et al., RUNX3 confers sensitivity to pheophorbide a-photodynamic therapy in human oral squamous cell carcinoma cell lines. Lasers in Medical Science, 2013. 30(2): p. 499-507.
10. Hsu, H.-J., et al., Role of cytokine gene (interferon-γ, transforming growth factor-β1, tumor necrosis factor-α, interleukin-6, and interleukin-10) polymorphisms in the risk of oral precancerous lesions in Taiwanese. The Kaohsiung Journal of Medical Sciences, 2014. 30(11): p. 551-558.
11. 行政院衛生福利部國民健康署, 102年死因統計結果分析. 2014.
12. 行政院衛生福利部國民健康署, 101年癌症登記年報. 2015.
13. 行政院衛生福利部國民健康署, 96年癌症登記年報. 2000.
14. Tsay, C.H. and C.H. Chiu, An epidemiological study of oral cancer in Taiwan. Zhonghua Ya Yi Xue Hui Za Zhi, 1990. 9(3): p. 104-15.
15. Chang, N.-W., et al., Co-treating with arecoline and 4-nitroquinoline 1-oxide to establish a mouse model mimicking oral tumorigenesis. Chemico-Biological Interactions, 2010. 183(1): p. 231-237.
16. Tiwari, R., Squamous cell carcinoma of the superior gingivolabial sulcus. Oral Oncology, 2000. 36(5): p. 461-465.
17. Muñoz Guerra, M.F., et al., Marginal and segmental mandibulectomy in patients with oral cancer: a statistical analysis of 106 cases. Journal of Oral and Maxillofacial Surgery. 61(11): p. 1289-1296.
18. Biglioli, F., Surgical therapy of oral cancer. Minerva stomatologica, 2009. 58(4): p. 157-180.
19. 行政院衛生福利部國民健康署, 100年癌症登記年報. 2014.
20. Grant, W.E., et al., Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. The Lancet. 342(8864): p. 147-148.
21. Song, L., et al., O-2 and Ca2+ Fluxes as Indicators of Apoptosis Induced by Rose Bengal-Mediated Photodynamic Therapy in Human Oral Squamous Carcinoma Cells. Photomedicine and Laser Surgery, 2015. 33(5): p. 258-265.
22. Edinger, A.L. and C.B. Thompson, Death by design: apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 2004. 16(6): p. 663-669.
23. Wilson, B.C. and M.S. Patterson, The physics, biophysics and technology of photodynamic therapy. Physics in Medicine and Biology, 2008. 53(9): p. R61-R109.
24. 中華民國癌症希望協會, 希望之路面對口腔癌.
25. Yu-Chiang, L., et al., Magnolol and honokiol isolated from magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochemical Pharmacology, 1994. 47(3): p. 549-553.
26. Tsai, Y.-C., et al., Beneficial effects of magnolol in a rodent model of endotoxin shock. European Journal of Pharmacology, 2010. 641(1): p. 67-73.
27. Shen, J.-L., et al., Honokiol and Magnolol as Multifunctional Antioxidative Molecules for Dermatologic Disorders. Molecules, 2010. 15(9): p. 6452-6465.
28. 劉律君, 包覆厚朴酚之聚縮酮微米顆粒的製備與其在生醫之應用. 醫學工程研究所, 2012. 國立台灣科技大學:台北市.
29. Lee, Y.-J., et al., Therapeutic applications of compounds in the Magnolia family. Pharmacology & Therapeutics, 2011. 130(2): p. 157-176.
30. Tsai, T.-H., et al., Pharmacokinetics of honokiol after intravenous administration in rats assessed using high performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1994. 655(1): p. 41-45.
31. Tsai, T.H., C.J. Chou, and C.F. Chen, Pharmacokinetics and Brain Distribution of Magnolol in the Rat after Intravenous Bolus Injection. Journal of Pharmacy and Pharmacology, 1996. 48(1): p. 57-59.
32. Kuo, D.-H., et al., Inhibitory Effect of Magnolol on TPA-Induced Skin Inflammation and Tumor Promotion in Mice. Journal of Agricultural and Food Chemistry, 2010. 58(9): p. 5777-5783.
33. Lee, S.-K., et al., Obovatol inhibits colorectal cancer growth by inhibiting tumor cell proliferation and inducing apoptosis. Bioorganic & Medicinal Chemistry, 2008. 16(18): p. 8397-8402.
34. Hwang, E.-S. and K.-K. Park, Magnolol Suppresses Metastasis via Inhibition of Invasion, Migration, and Matrix Metalloproteinase-2/-9 Activities in PC-3 Human Prostate Carcinoma Cells. Bioscience, Biotechnology, and Biochemistry, 2010. 74(5): p. 961-967.
35. Yang, S.-E., et al., Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. British Journal of Pharmacology, 2003. 138(1): p. 193-201.
36. Ma, T., Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. International Journal of Oncology, 2011.
37. Ledgerwood, E.C. and I.M. Morison, Targeting the apoptosome for cancer therapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 2009. 15(2): p. 420-424.
38. Chen, X.r., et al., Honokiol: a promising small molecular weight natural agent for the growth inhibition of oral squamous cell carcinoma cells. International Journal of Oral Science, 2011. 3(1): p. 34-42.
39. Bailey, C.J. and R.C. Turner, Metformin. New England Journal of Medicine, 1996. 334(9): p. 574-579.
40. Jose, P., et al., Metformin-Loaded BSA Nanoparticles in Cancer Therapy: A New Perspective for an Old Antidiabetic Drug. Cell Biochemistry and Biophysics, 2014. 71(2): p. 627-636.
41. Garrett, C.R., et al., Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br J Cancer, 2012. 106(8): p. 1374-1378.
42. Chen, T.-M., et al., Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. Journal of Gastroenterology and Hepatology, 2011. 26(5): p. 858-865.
43. Liou, W.-S., et al., Herbal product silibinin-induced programmed cell death is enhanced by metformin in cervical cancer cells at the dose without influence on nonmalignant cells. Journal of Applied Biomedicine, 2015. 13(2): p. 113-121.
44. Nenu, I., et al., Metformin associated with photodynamic therapy – A novel oncological direction. Journal of Photochemistry and Photobiology B: Biology, 2014. 138: p. 80-91.
45. Lee, Y.J., et al., Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined. PLoS ONE, 2014. 9(2): p. e87979.
46. Sahra, I.B., et al., The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008. 27(25): p. 3576-3586.
47. Romero, I.L., et al., Relationship of Type II Diabetes and Metformin Use to Ovarian Cancer Progression, Survival, and Chemosensitivity. Obstetrics and gynecology, 2012. 119(1): p. 61-67.
48. Aldea, M., et al., Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery. Tumor Biology, 2014. 35(6): p. 5101-5110.
49. Gundogdu, N. and M. Cetin, Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: Preparation and in vitro evaluation. Pakistan Journal of Pharmaceutical Sciences, 2014. 27(6): p. 1923-1929.
50. Corti, G., et al., Sustained-release matrix tablets of metformin hydrochloride in combination with triacetyl-beta-cyclodextrin. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2008. 68(2): p. 303-309.
51. Choi, M.-K. and I.-S. Song, Organic Cation Transporters and their Pharmacokinetic and Pharmacodynamic Consequences. Drug Metabolism and Pharmacokinetics, 2008. 23(4): p. 243-253.
52. Segal, E.D., et al., Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochemical and Biophysical Research Communications, 2011. 414(4): p. 694-699.
53. Patel, H., et al., Differential expression of organic cation transporter OCT-3 in oral premalignant and malignant lesions: potential implications in the antineoplastic effects of metformin. Journal of Oral Pathology & Medicine, 2013. 42(3): p. 250-256.
54. Snima, K.S., et al., O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydrate Polymers, 2012. 89(3): p. 1003-1007.
55. Martinez-Outschoorn, U.E., et al., Energy transfer in "parasitic" cancer metabolism. Cell Cycle, 2011. 10(24): p. 4208-4216.
56. Buzzai, M., et al., Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell Growth. Cancer Research, 2007. 67(14): p. 6745-6752.
57. Okoshi, R., et al., Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. The Journal of biological chemistry, 2008. 283(7): p. 3979-3987.
58. Zhuang, Y. and W.K. Miskimins, Metformin Induces Both Caspase-Dependent and Poly(ADP-ribose) Polymerase-Dependent Cell Death in Breast Cancer Cells. Molecular Cancer Research, 2011. 9(5): p. 603-615.
59. Lee, J.J., et al., Interaction Index and Different Methods for Determining Drug Interaction in Combination Therapy. Journal of Biopharmaceutical Statistics, 2007. 17(3): p. 461-480.
60. P. Shah, P., P. R. Desai, and M. Singh, Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. Journal of Controlled Release, 2012. 158(2): p. 336-345.
61. Miao, L., et al., Nanoparticles with Precise Ratiometric Co-Loading and Co-Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer. Advanced Functional Materials, 2014. 24(42): p. 6601-6611.
62. Menale, C., et al., Efficacy of Piroxicam Plus Cisplatin-Loaded PLGA Nanoparticles in Inducing Apoptosis in Mesothelioma Cells. Pharmaceutical Research, 2014. 32(2): p. 362-374.
63. Wang, Y., et al., Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater, 2006. 5(10): p. 791-796.
64. 薛敬和, 生命科學與工程. 2nd ed. 百晴文化科寄出版股份有限公司, 2012.
65. Hoffman, A.S., CHAPTER II.5.16 - Drug Delivery Systems, in Biomaterials Science (Third Edition), B.D.R.S.H.J.S.E. Lemons, Editor. 2013, Academic Press. p. 1024-1027.
66. Steve I. Shen, B.R.J., and Xiaoling Li, Design Of Controlled-release Drug Delivery Systems. New York: McGraw-Hill, 2006.
67. Allen, T.M., Drug Delivery Systems: Entering the Mainstream. Science, 2004. 303(5665): p. 1818-1822.
68. Wang, X., et al., Advances of Cancer Therapy by Nanotechnology. Cancer Res Treat, 2009. 41(1): p. 1-11.
69. Sun, T., et al., Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie International Edition, 2014: p. n/a-n/a.
70. Acharya, S. and S.K. Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews, 2011. 63(3): p. 170-183.
71. Koziara, J.M., et al., In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. Journal of Controlled Release, 2006. 112(3): p. 312-319.
72. Panyam, J. and V. Labhasetwar, Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles. Molecular Pharmaceutics, 2004. 1(1): p. 77-84.
73. Kohane, D.S., et al., Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. Journal of Biomedical Materials Research Part A, 2006. 77A(2): p. 351-361.
74. Kohane, D.S., Microparticles and nanoparticles for drug delivery. Biotechnology and Bioengineering, 2007. 96(2): p. 203-209.
75. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3(4): p. 1377-1397.
76. Commandeur, S., H.M.M. Van Beusekom, and W.J. Van Der Giessen, Polymers, Drug Release, and Drug-Eluting Stents. Journal of Interventional Cardiology, 2006. 19(6): p. 500-506.
77. Danhier, F., et al., PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release, 2012. 161(2): p. 505-522.
78. Vrignaud, S., J.-P. Benoit, and P. Saulnier, Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials, 2011. 32(33): p. 8593-8604.
79. Chitkara, D. and N. Kumar, BSA-PLGA-Based Core-Shell Nanoparticles as Carrier System for Water-Soluble Drugs. Pharmaceutical Research, 2013. 30(9): p. 2396-2409.
80. Wang, Y.-J., et al., Magnolol-Loaded Core–Shell Hydrogel Nanoparticles: Drug Release, Intracellular Uptake, and Controlled Cytotoxicity for the Inhibition of Migration of Vascular Smooth Muscle Cells. Molecular Pharmaceutics, 2011. 8(6): p. 2339-2349.
81. Lee, P.-W., et al., Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials, 2010. 31(8): p. 2425-2434.
82. Hu, S.-H., S.-Y. Chen, and X. Gao, Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS nano, 2012. 6(3): p. 2558-2565.
83. Müller, B., H. Leuenberger, and T. Kissel, Albumin Nanospheres as Carriers for Passive Drug Targeting: An Optimized Manufacturing Technique. Pharmaceutical Research, 1996. 13(1): p. 32-37.
84. Patil, G.V., Biopolymer albumin for diagnosis and in drug delivery. Drug Development Research, 2003. 58(3): p. 219-247.
85. Irache, J.M., et al., Albumin Nanoparticles for the Intravitreal Delivery of Anticytomegaloviral Drugs. Mini Reviews in Medicinal Chemistry, 2005. 5(3): p. 293-305.
86. Elzoghby, A.O., W.M. Samy, and N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 2012. 157(2): p. 168-182.
87. Qi, J., et al., Nanoparticles with dextran/chitosan shell and BSA/chitosan core—Doxorubicin loading and delivery. International Journal of Pharmaceutics, 2010. 393(1-2): p. 177-185.
88. Yang, S.C., et al., Doxorubicin-loaded poly(butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization. Journal of Applied Polymer Science, 2000. 78(3): p. 517-526.
89. Farago, P.V., et al., Physicochemical characterization of a hydrophilic model drug-loaded PHBV microparticles obtained by the double emulsion/solvent evaporation technique. Journal of the Brazilian Chemical Society, 2008. 19(7): p. 1298-1305.
90. Quinn, B.J., et al., Repositioning metformin for cancer prevention and treatment. Trends in Endocrinology & Metabolism, 2013. 24(9): p. 469-480.
91. Cantrell, L.A., et al., Metformin is a potent inhibitor of endometrial cancer cell proliferation--implications for a novel treatment strategy. Gynecol Oncol, 2010. 116(1): p. 92-8.
92. Rasul, A., et al., Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int J Oncol, 2012. 40(4): p. 1153-61.
93. Lee, J.-H., T.G. Park, and H.-K. Choi, Effect of formulation and processing variables on the characteristics of microspheres for water-soluble drugs prepared by w/o/o double emulsion solvent diffusion method. International Journal of Pharmaceutics, 2000. 196(1): p. 75-83.
94. Tewes, F., et al., Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. European Journal of Pharmaceutics and Biopharmaceutics, 2007. 66(3): p. 488-492.

QR CODE