簡易檢索 / 詳目顯示

研究生: 陳品瑜
Pin-Yu Chen
論文名稱: 以化學還原法合成Ag@TiO2核殼結構奈米顆粒及其結構之研究
Study of Ag@TiO2 Core-shell Nanoparticles Synthesized Through Chemical Reduction Method
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 缺陷奈米顆粒界面X光吸收光譜核殼結構
外文關鍵詞: core-shell, XAS, interface, defect, nanoparticle.
相關次數: 點閱:431下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗以二階段式化學法合成Ag@TiO2核殼奈米顆粒結構,熱輔助光還原法合成Ag顆粒,化學還原法製備TiO2殼層。以X光繞射儀、掃描式電子顯微鏡、穿透式電子顯微鏡,及X光吸收光譜分析樣品成分、形貌、結構與價態之改變。研究結果顯示,化學還原法可以成功合成TiO2奈米顆粒,但在高濃度(8mM)的時候,會有前驅物之殘留。Ag@TiO2核殼奈米顆粒結構也成功利用化學還原法製備,殼層厚度隨著Ti濃度上升而上升。Raman分析顯示形成核殼結構缺陷有明顯的增加,XAS分析則顯示Ag@TiO2樣品中Ti3+隨著TiO2濃度增加而提高。磁性量測結果指出具此種核殼結構之奈米顆粒,室溫鐵磁性可大幅提升。


In this study, Ag@TiO2 core-shell nanoparticles (NPs) by two-step method. Ag nanoparticles was prepared by thermal assisted photoreduction method (TAP), and then covered by TiO2 NPs which were obtained by chemical reduction method. The morphology, crystallinity, and electronic structure of NPs were characterized by using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Raman and X-ray absorption spectroscopy (XAS). Our results first showed that TiO2 NPs could be synthesized by chemical reduction method. However, residual precursor was observed as the concentration of precursor reached 4mM. Second, Ag@TiO2 core-shell NPs were synthesized successfully by two step reduction method. Shell thickness can be controlled easily by adjusting the concentration of precursor. It is also demonstrated that defects, including oxygen vacancy and Ti3+, were introduced after the formation of core shell structure. At last, enhanced room temperature ferromagnetism was observed of Ag@TiO2 core-shell NPs. 

摘 要 I 目 錄 IV 圖索引 VI 表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.3 研究動機與目的 5 第二章 文獻回顧與理論介紹 9 2.1 核殼奈米材料種類與應用[23] 9 2.1.1無機-有機核殼奈米結構 9 2.1.2無機-無機核殼奈米結構 10 2.1.3有機-有機核殼奈米結構 12 2.1.4無機-生物分子核殼奈米結構 13 2.2 金屬-金屬氧化物之核殼奈米結構 14 2.3 銀(Ag)奈米顆粒 - 二氧化鈦(TiO2)核殼奈米粒子 19 2.3.1 Ag的特色、結構與應用[50-51] 21 2.3.2二氧化鈦( TiO2)晶體結構及化學性質 23 2.3.3二氧化鈦( TiO2)之室溫鐵磁性特性 26 2.4 Ag@TiO2製備方式 29 2.4.1 銀(Ag)奈米顆粒之合成 29 2.4.2二氧化鈦(TiO2)殼層與之製備 33 第三章 實驗方法 34 3.1 實驗流程 34 3.1.1 Ag奈米顆粒之製備 35 3.1.2 TiO2殼層合成 36 3.2 性質分析 37 3.2.1低掠角X光繞射(X-ray Diffraction, XRD) 37 3.2.2穿透式電子顯微鏡(Transmission electron microscopy, TEM) 40 3.2.3拉曼光譜(Raman scattering Spectrometer) 41 3.2.4 X光吸收光譜 (X-rays Absorption Spectroscopy,XAS)[98] 42 3.2.5震動樣品磁度儀(Vibrating Sample Magnetometer, VSM) 44 第四章 結果與討論 45 4.1 以還原法製備TiO2奈米顆粒 45 4.1.1 XRD與TEM之分析 45 4.1.2 XAS分析 47 4.1.3 Raman Spectrum分析 52 4.2 以還原法製備Ag@TiO2 核殼結構奈米顆粒及結構分析 53 4.2.1 TiO2不同起始濃度之Ag@TiO2奈米顆粒形貌分析 53 4.2.2 不同TiO2起始濃度製備之Ag@TiO2核殼奈米顆粒結構分析 59 4.3 Ag@TiO2 核殼奈米顆粒之磁性分析 68 第五章 結論 69 第六章 參考文獻 70

[1] 周文釗, 科學新天地, 奈米材料在生活上的應用, pp. 15 (2009).
[2] 郭文法, 工業材料, 125 期, pp. 130 (1997).
[3] Henglein, Arnim., Chemical Reviews, 89.8, pp. 1861 (1989).
[4] 陳東煌.”複合奈米粒子-有趣的人造粒子” 科學發展408期(2006).
[5] 陳東煌. "複合奈米粒子的製備與應用" 化工技術 120, pp.180 (2003).
[6] 陳嘉祈和呂世源. "奈米核殼粒子與奈米中空球之製備與應用" 化工技術120, pp.194 (2003).
[7] F. Caruso. Advanced Materials 13, pp.11 (2001).
[8] 莊浩宇,二氧化鈦奈米粒子及其金屬核殼型奈米複合材料之製備與應用研究,國立成功大學博士論文, (2009).
[9] R. Hayes et al., J. Chromatogr. A, 1357, pp. 36 (2014).
[10] H. D. She, Y. Z. Chen, X. Z. Chen, K. Zhang, Z. Y. Wang and D. L. Peng, J. Mater. Chem., 22, pp. 2757 (2012).
[11] 梁藝礬,合成二氧化矽/銀核殼結構及其表面電漿子共振引發之光催化效應研究,國立清華大學碩士論文(2012)
[12] Li, Guodong, and Zhiyong Tang., Nanoscale, 6.8, pp. 3995 (2014).
[13] West J.L., Halas N.J., , Annu. Rev. Biomed. Eng., 5, pp. 285 (2003).
[14] Kalele S.A., Ashtaputre S.S., Hebalkar N.Y., Gosavi S.W., Deobagkar D.N., Deobagkar D.D., Chem. Phys. Lett., 404, pp. 136 (2005).
[15] Tsutomu Hirakawa and Prashant V. Kamat, Langmuir, 20, pp. 5645 (2004).
[16] Yeon-tae Yu and Paul Mulvaney, Materials Transactions, 45, pp. 964 (2004).
[17] Zhen Wang, Ling Zang, Xiaoyun Fan, Hanzhong Jia, Li Li, Wenye Deng, Chuanyi Wang, Applied Surface Science, 358, pp. 479(2015).
[18] B. Karunagaran, Periyayya Uthirakumar, S.J. Chung, S. Velumani, E.-K. Suh, Materials Characterization, 58, pp. 680 (2007).
[19] Su Pei Lim, Alagarsamy Pandikumar, Nay Ming Huang and Hong Ngee Lim, RSC Adv., 4, pp. 38111(2014).
[20] N. Rajkumar and K. Ramachandran, IEEE Transactions on nanotechnology, 10, pp. 513 (2011).
[21] Skoda, M., et al. The Journal of chemical physics, 130, pp. 034703 (2009).
[22] Ding Rong Ou, Toshiyuki Mori, Hirotaka Togasaki, Motoi Takahashi, Fei Ye and John Drennan, Langmuir, 27, pp. 3859 (2011).
[23] Chuan-Jian Zhong, Mathew M. Maye, Adv. Mater., 13, pp. 1507 (2001).
[24] M. M. Maye, C. J. Zhong, J. Mater. Chem., 10, pp. 1895 (2000).
[25] Toshima, N.; Shiraishi, Y.; Shiotuski, A.; Ikenaga, D.; Wang, Y., Eur. Phys. J. D, 16, pp. 209 (2001).
[26] Okistu, K.; Murakami, M.; Tanabe, S.; Matsumoto, H., Chem. Lett., 11, pp. 1336 (2000).Morriss, R. H., and L. F. Collins. The Journal of Chemical Physics, 41.11, pp. 3357 (1964).
[27] Morriss, R. H., and L. F. Collins. The Journal of Chemical Physics, 41.11, pp. 3357 (1964).
[28] Han, Mingyong, et al. Nature biotechnology, 19.7, pp. 631 (2001).
[29] Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Rogach, A. L.;Kornowski, A.; Eychmuller, A.; Weller, H., Pure Appl. Chem., 72, pp. 295(2000).
[30] Joensson, J. E.; Hassanser, H.; Toernell, B., Macromolecules, 27, pp. 1932 (1994).
[31] Ahn, C. H.; Choi, J. W.; Cho, H. J. Nanomagnetics for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, 6, pp. 815 (2004).
[32] Tartaj, P. Nanomagnets for biomedical applications. In:Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology California:American Scientific Publishers, 6, pp. 823(2004).
[33] Berry, Catherine C., and Adam SG Curtis. Journal of physics D: Applied physics, 36.13, pp. R198 (2003).
[34] Shinkai, Masashige. Journal of bioscience and bioengineering 94.6 (2002): 606-613.W. Ostwald, Z. Phys. Chem., 34, pp. 495(1900).
[35] Zhang, Jun, et al. Journal of Materials Chemistry, 22.21, pp.10480 (2012).
[36] Mitsudome, Takato, et al. Angewandte Chemie International Edition, 51.1, pp.136 (2012).
[37] Ahn, C. H.; Choi, J. W.; Cho, H. J. Nanomagnetics for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, 6, pp. 815 (2004).
[38] Jian Qi, Jie Chen, Guodong Li, Shunxing Li, Yan Gao and Zhiyong Tang, Energy Environ. Sci., 5, pp. 8937 (2012)
[39] M Abdulla-Al-Mamun, Y Kusumoto, T Zannat, MS Islam, Applied Catalysis A: General, 398, pp. 134(2011).
[40] Hirakawa, Kamat, J. Am. Chem. Soc., 127, pp. 3928 (2004).
[41] S. Angkaew and P. Limsuwan, Procedia Engineering, 32, pp. 649 (2012).
[42] Md. Abdulla-Al-Mamun et al., Applied Catalysis A: General, 398, pp. 134 (2011).
[43] Liang, Fengli, Wei Zhou, and Zhonghua Zhu. ChemElectroChem 1.10, pp. 1627 (2014).
[44] Jun Fang, Lisha Yin, Shaowen Cao, Yusen Liao and Can Xue, Beilstein J. Nanotechnol., 5, pp. 360 (2014).
[45] J. Goebl, Ji Bong Joo, Michael Dahl, Yadong Yin, Catalysis Today, 225, pp. 90 (2014).
[46] Nan Zhang, Siqi Liu, Xianzhi Fu, and Yi-Jun Xu, J. Phys. Chem. C, 115, pp. 913 (2011).
[47] Chen, Junchen, et al., Nano Research, 6.12, pp. 871 (2013).
[48] Tsutomu Hirakawa, Prashant V. Kamat, Langmuir, 20, pp. 5645 (2004).
[49] I. Tunc et al., Surf. Interface Anal., Surface and Interface Analysis, 42, pp. 835 (2010).
[50] Qi, Jian, et al. Energy & Environmental Science, 5.10, pp. 8937 (2012).
[51] 周更生, 李賢學, 高振裕, 盧育杰, 功能性粉末-奈米銀, 科學發展, 408期, pp 32 (2006).
[52] Q H Tran et al, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4, pp. 033001 (2013).
[53] Lee K J, Jun B H, Kim T H and Joung J , Nanotechnology , 17, pp. 2424 (2006).
[54] Kim D, Jeong S and Moon J , Nanotechnology ,17, pp. 4019 (2006).
[55] Mishra Y K, Mohapatra S and Kabiraj D et al, Scri. Mater., 56, pp. 629 (2007).
[56] Sato-Berr´u R, Red´on R, V´azquez-Olmos A and Saniger J M, J. Raman Spectrosc., 40, pp. 376(2009).
[57] Naik R R, Stringer S J, Agarwal G, Jones S E and Stone M O, Nature. Mater. , 1, pp. 169(2002)
[58] Amaladhas T P et al, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, pp. 045006(2012)
[59] Umadevi M, Shalini S and Bindhu M R, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, pp. 025008(2012)
[60] R. Austin and S.-f. Lim, "The Sackler Colloquium on Pormoses and Perils in Nanotechnology for Medicine," PNAS, vol. 105, no. 45, pp. 17217-17221, 2008.
[61] S. Woodley and C. Catlow, "Structure prediction of titania phases: Implementation of Darwinian versus Lamarckian concepts in an Evolutionary Algorithm," Computational Materials Science, 45, pp. 84 (2009).
[62] Ulrike Diebold, Surface Science Reports , 48 , pp. 53 (2003).
[63] 廖怡婷,「摻雜金屬離子之二氧化鈦奈米顆粒及二氧化鈦/二氧化錫奈米複合材料的合成與鑑定」,國立清華大學化學系碩士論文,(2009).
[64] M. K. Nowotny, L. R. Sheppard, T. Bak, and J. Nowotny , Journal of Physical Chemistry C , 12 , p. 5275 (2008).
[65] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Y. Koshihara, and H. Koinuma, Science, 91, pp. 854 (2001).
[66] K. Ueda, H. Tabata, and T. Kawai, Applied Physics Letters, 79, pp. 988 (2001).
[67] C. B. Fitzgerald, M. Venkatesan, A. P. Douvalis, S. Huber, J. M. D. Coey, and T. Bakas, Journal of Applied Physics, 95, pp. 7390 (2002).
[68] S. N. Kale, S. B. Ogale, and S. R. Shinde, Applied Physics Letters, Vol 82, No. 13, pp. 2100 (2003).
[69] Y. Takeuchi, G. Yoshizaki, and T. Takeuchi, Nature, Vol. 430, pp. 630 (2004).
[70] N. H. Hong, J. Sakai, A. Ruyter, and V. Brize, Applied Physics Letters, 89, pp. 252504 (2006).
[71] N. H. Hong, Joe Sakai, Physical Review B, 73, pp. 132404 (2006).
[72] G. Glaspell and A. Manivannan, Journal of Cluster Science, 16, pp. 501 (2005).
[73] N. Rajkumar and K. Ramachandran , IEEE Transactions on Nanotechnology, 10, (2011).
[74] Reetz, Manfred T., Wolfgang Helbig, and Stefan A. Quaiser. Chemistry of materials, 7.12, pp. 2227 (1995).
[75] Gachard, Elisabeth, et al. New journal of chemistry, 22.11, pp.1257 (1998).
[76] T. Yonezawa, T. Sato, S. Kurada, K. Kuge, J. Chem, Soc. Faraday Trans., 87, pp.1905 (1991).
[77] Mizukoshi, Yoshiteru, et al. The Journal of Physical Chemistry B 101.36, pp.7033 (1997).
[78] He, Baolin, et al. Journal of Molecular Catalysis A: Chemical, 221.1, pp.121 (2004).
[79] Lavinia Balan, Jean-Pierre Malval, Raphaël Schneider, Dominique Burget, Mat. Chem. Phy., 104, pp.417 (2007).
[80] G. A. Martı´nez-Castanon, N. Nino-Martınez,F. Martınez-Gutierrez, J. R. Martı´nez-Mendoza, Facundo Ruiz, J Nanopart Res., 10, pp. 1343 (2008).
[81] Haw-Yeu Chuang and Dong-Hwang Chen, Nanotechnology, 20, pp. 105704 (2009).
[82] Hsien-Tse Tung, Jenn-Ming Song, Yung-Tang Nien and In-Gann Chen, Nanotechnology, 19, pp. 455603 (2008).
[83] Hsien-Tse Tung, Jenn-Ming Song, Teng-Yuan Dong, Weng-Sing Hwang, and In-Gann Chen, Crystal Growth & Design, 8, pp. 3415 (2008).
[84] Hsien-Tse Tung, In-Gann Chen, Jenn-Ming Song and Cheng-Wei Yen, J. Mater. Chem., 19, pp. 2386 (2009).
[85] W. S. Liao, T. Yang, E. T. Castellana, S. Kataoka, P. S. Cremer, A rapid prototyping approach to Ag nanoparticle fabrication in the 10-100 nm Range, Adv. Mater., 18, pp. 2240 (2006) .
[86] V. Iliev, D. Tomova, L. Bilyarska, G. Tyuliev, J. Mole. Catal. A: Chemical, 263, pp. 32 (2007).
[87] M. Haruta, Catal. Today, 36, pp. 153 (1997).
[88] J.-M. Song, Applied Surface Science, 285, pp. 450 (2013).
[89] S. Phokaa, P. Laokula, E. Swatsitanga, V.Promarakb, S. Seraphinc, and S.Maensiria, Materials Chemistry and Physics, 115, pp. 423 (2009).
[90] T. Sugimoto et al., Journal of Colloid and Interface Science, 259, pp. 43 (2003).
[91] R. Vijayalakshmi et al., Arch. Appl. Sci. Res., 4, pp. 1183 (2012).
[92] C.-S. Fang, Y.-W. Chen, Materials Chemistry and Physics, 78, pp. 739 (2003).
[93] Martin Andersson, Lars O2 sterlund, Sten Ljungstro1m,and Anders Palmqvist, J. Phys. Chem. B, 106, pp. 10674 (2002).
[94] X. Zhang, D. Zhang, X. Ni, H. Zheng, Chem. Lett., 35 (2006).
[95] 鄭信民, 林麗娟, 工業材料雜誌, 181 (2002).
[96] Chen, Yang, and Renwei Long. Applied Surface Science 257.20, pp.8679 (2011).
[97] 陳則良,「X光吸收光譜對BaTiO3@SrTiO3超晶格之研究」,私立淡江大學物理研究所,碩士論文,(2001).
[98] Wang, Fan, et al. ACS applied materials & interfaces, 6.24, pp.22216 (2014)
[99] Inna Karatchevtseva,w David J. Cassidy, Zhaoming Zhang, Gerry Triani, Kim S. Finnie, Sandra L. Cram, and Christophe J. Barbe, Journal of Americam Chemical Society, vol.91 pp.2015–2023 (2008)
[100] F.M.F. de Groat , Journal of Electron Spectroscopy and Related Phenomena, 61 ,pp. 529 (1994).
[101] G. S. Henderson, X. Liu, M. E. Fleet, Phys. Chem. Minerals, 29, pp. 32 (2002).
[102] Braun et al., J. Phys. Chem. C, 114, pp. 516 (2010).
[103] J. C. Parker and R W, Siege,Appl. Phys. Lett., 51, pp. 943(1990).
[104] Batakrushna Santara, Bappaditya Pal and P. K. Giri, J. Appl. Phys. 110, pp. 114322 (2011).
[105] Wonkyung Ra, Masanobu Nakayama, Woosuk Cho, Masataka Wakihara and Yoshiharu Uchimoto, Phys. Chem. Chem. Phys., 8, pp. 882 (2006).
[106] V. Luca, S. Djajanti, and R. F. Howe, Journal of Physical Chemistry B, 102, pp. 10650 (1998).
[107] F. Farges, G. E. Brown, and J. J. Rehr, Physical Review B, 56, pp. 1809 (2004).

QR CODE