簡易檢索 / 詳目顯示

研究生: 紀長嘉
Chang-Chia Chi
論文名稱: 設計一應用於分時多工被動光學網路之低成本與主動式監控系統
Design a Cost-Effective and Monitoring-Active System for TDM-Passive Optical Networks
指導教授: 譚昌文
Chen-Wen Tarn
口試委員: 黃柏仁
Bohr-Ran Huang
陳鴻興
Hung-Shing Chen
江正雄
Jen-Shiun Chiang
李揚漢
Yang-han Lee
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 64
中文關鍵詞: 分時多工被動光學網路雙向窄頻FP-LD收發器
外文關鍵詞: TDM-PON, Fabry-Perot laser transceiver
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們提出一個新型監控系統SPMS(Simple PON Monitoring System),應用於分時多工被動光學網路(Time Division Multiplexing Passive Optical Network, TDM-PON)光纖斷點偵測,此系統具備架構簡單、低成本與自動即時偵測等優點,SPMS監控模組主要使用成本較低的Fabry-Perot 雷射二極體,利用外加控制電路產生順向與逆向偏壓,製成具有發射器及接受器切換功能的雙向窄頻FP-LD收發器,在搭配AT89S52單晶片微處理器產生與處理每一個用戶端設備光學網路單元(Optical Network Unit, ONU)監控信號,以監控光分歧器與ONU間之光纖連線狀態,監控過程能即時反應網路狀態,且不影響TDM-PON網路之運作。本論文亦透過實驗方式,使用1:16與1:32光分歧器以點對多點方式銜接SPMS監控模組;成功驗證其可行性與可擴充性,預估監控一個128 ONU的TDM-PON網路,整個SPMS監控系統的成本可低於300美元。


    In this thesis, we propose a new monitoring system for fiber outage detecting in Time Division Multiplexing Passive Optical Network (TDM-PON) that is called SPMS (Simple PON Monitoring System). The advantages of this system have simple, cost-effective and detection active. SPMS monitoring modules that use cheap Fabry-Perot laser diode with an external control circuit which mainly is a combination of switchable forward biased and reverse biased circuit can act as a switchable bidirectional optical transceiver with a narrowband transmission capability. It combines the AT89S52 microprocessor for the generation and dealing with the monitoring signals at each ONU in customer side that can essentially identify the fiber fault without interrupting the services when monitoring branch fiber status between optical splitter and ONU. This thesis also uses 1:16 and 1:32 optical splitter to connect SPMS monitoring module through point-to-multipoint by the experiment which successfully verified the feasibility and scalability. We estimate that the material cost to build an optical network monitor system for a TDM-PON network with 128 ONUs is lower than 300 US$.

    摘要 III Abstract IV 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 TDM-PON網路斷點監控技術 4 2.1 已知TDM-PON網路斷點監控技術 5 2.1.1 單波長OTDR監控技術 7 2.1.2 多波長OTDR監控技術 9 2.2 新型TDM-PON網路斷點監控技術 11 2.2.1 SPMS監控模組架構 13 2.2.2 FP 雷射 TX/RX運作模式 14 2.3 設計監控系統時需考量因素 17 第三章 SPMS應用於TDM-PON網路斷點監控技術 20 3.1 SPMS架構與運作模式 21 3.2 監控模式1: 一對一(one-by-one) 25 3.3 監控模式2: 分時多工存取(TDMA) 28 3.4 SPMS之光纖斷點位置偵測機制 31 第四章 SPMS監控技術實作 34 4.1 SPMS實作架構圖 34 4.2 SPMS偵測時間與成本估算 42 4.3 SPMS實作情境與結果 46 4.3.1 1:16 SPMS實作分析 46 4.3.2 1:32 SPMS實作分析 52 第五章 結論與未來展望 57 5.1 結論 57 5.2 未來展望 58 參考文獻 59

    [1] 行政院數位匯流專案小組,「2010-2015年數位匯流發展方案」 [online], Available: http://www.ey.gov.tw/news_Content.aspx? n =3D06E532B0 D8316C&s=7662100D0C8F0E03.

    [2] B. Batagelj, “FTTH networks deployment in Slovenia,” in Proc. ICTON, Azores, pp. 1-4, 2009.

    [3] E. M. Abdullah and F. Habib, “Physical layer monitoring techniques for TDM-passive optical networks: A survey,” IEEE Commun. Surveys and Tutorials, vol. 15, no. 2, pp. 943-958, 2013.

    [4] Y. Chen and S. Chi, “Fault-locating and supervisory technique for multistaged branched optical networks,” IEEE Photonics Technol. Lett., vol. 6, no. 7, pp. 876-879, July 1994.

    [5] M. Ab-Rahman, B. Ng, A. Premadi, and K. Jumari, “Transmission surveillance and self-restoration against fiber fault for time division multiplexing using passive optical network,” IET Commun., vol. 3, no. 12, pp. 1896-1906, April 2009.

    [6] N. Chuan, A. Premadi, M. Ab-Rahman, and K. Jumari, “Physical layer monitoring in 8-branched PON-based i-FTTH,” in Proc. Intel. Conf. on Photon. (ICP), July 2010.

    [7] K. Yuksel, S. Letheux, A. Grillet, M. Wuilpart, D. Giannone, J. Hancq, G. Ravet, and P. Megret, “Centralised Optical Monitoring of Treestructured PONs using a Raman-assisted OTDR,” in Proc. Intel. Conf. on Transparent Optical Networks, vol. 1, pp. 175-178, Aug. 2007.

    [8] J. Cohen and L. Winter, “Optical communication network with passive monitoring,” U.S Patent, no. 5285305, Feb. 02, 1994.

    [9] K. Ozawa, J. Hanai, A. Ban, T. Naitou, and K. Shimoura, “Field trial of in-service individual line monitoring of PONs using a tunable OTDR,” in Proc. of 14th Intel. Conf. on Optical fiber Sensors, Venice, 2000, pp. 880-883.

    [10] N. Honda, H. Izumita, and M. Nakamura, “Spectral Filtering Criteria for U-Band Test Light for In-Service Line Monitoring in Optical Fiber Networks,” J. Lightw. Technol., vol. 24, no. 6., pp. 2328-2335, June 2006.

    [11] ITU-T Recommendation L.66, “Optical fiber cable maintenance criteria for in-service fiber testing in access networks,” May 2007.

    [12] P. Urban and S. Dahlfort, “Cost-Efficient Remote PON Monitoring Based on OTDR Measurement and OTM Functionality,” in Proc. ICTON, Stockholm, Sweden, June 2011, pp. 1-4.

    [13] S. C. Ko, S. C. Lin, and Y. H. Huang, “A fiber fault monitoring design for PON system using reflective signal,” in Proc. OECC, July 2011, pp. 555-556.

    [14] M. M. Rad, H. A. Fathallah, M. Maier, L. A. Rusch, and M. Uysal, “A novel pulse-positioned coding scheme for fiber fault monitoring of a PON,” IEEE Commun. Lett., vol. 15, no. 9, pp. 1007-1009, Sep. 2011.

    [15] M. A. Esmail and H. Fathallah, “Analyzing the receiver operating characteristics of novel fiber ring based PON monitoring system,” in Proc. IEEE Global Telecom. Conf., Dec. 2010.

    [16] E. Wong and K. L. Lee, “Characterization of highly-sensitive and fast-responding monitoring module for extended-reach passive optical networks,” Optics Express, vol. 20, no. 8, pp. 9019-9030, April 2012.

    [17] H. K. Shim, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Demonstration of correlation-based OTDR for in-service monitoring of 64-split TDM PON,” in Proc. OFC/NFOEC, March 2012.

    [18] N. B. Chuan and M. S. Ab-Rahman, “Lightwave measurement and characterization in passive optical network (PON),” in Proc. ICSSC, Oct. 2009, pp.56-61.

    [19] N. L. M. Rawi, F. Abdullah, M. Z. Jamaludin, and M. H. Al-Mansoori, “Live monitoring system for ethernet passive optical network health using fiber Bragg grating,” in Proc. SCOReD, Dec. 2010, pp. 56-58.

    [20] M. A. Esmail and H. Fathallah, “Novel coding for PON fault identification,” IEEE Commun. Lett., vol. 15, no. 6, pp. 677-679, June 2011.

    [21] K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Megret, “Novel monitoring technique for passive optical networks based on optical frequency domain reflectometry and fiber Bragg gratings,” J. Opt. Commun. Netw., vol. 2, no. 7, pp. 463-468, July 2010.

    [22] K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Megret, “Original monitoring technique for passive optical networks combining fiber Bragg gratings and wavelength swept light source,” in Proc. ICTON, June 2010.

    [23] A. Ehrhardt, F. Escher, L. Schurer, H. M. Foisel, A. Templin, M. Adamy, and C. Gerlach, “PON measurements and monitoring solutions for FTTH networks during deployment and operation,” in Proc. ICTON, June 2011.

    [24] B. Ng, M. S. Ab-Rahman, A. Premadi, and K. Jumari, “Portable network monitoring system for Passive Optical Network (PON),” in Proc. ICCTD, vol. 2, pp. 176-180, 2009.

    [25] G. M. Beleffi, D. M. Forin, S. D. Bartolo, G. Incerti, V. Carrozzo, A. Ando, A. Busacca, A. L. J. Teixeira, L. Costa, A. Valenti, and S. Pompei, “Remote optical monitoring in remotely power assisted passive optical networks,” in Proc. ICTON, June 2010.

    [26] D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks,” J. Lightw. Technol., vol. 25, no. 5, pp. 1290-1297, May 2007.

    [27] N. Honda, “Advanced optical monitoring technologies for passive optical network architecture and the future,” in Proc. OFC/NFOEC, March 2012.

    [28] M. Thollabandi, X. Cheng, and Y.K. Yeo, “Encoded Probing Technique for Detection of the Faulty Branch in TDM-PON,” in Proc. IEEE Photon. Technol. Lett., vol. 24, no. 18, Sep. 2012.

    [29] M. A. Esmail and H. Fathallah, “Current and Next-Generation Passive Optical Networks Monitoring Solution,” in Proc. HONET, Dec. 2011, pp. 334-338.

    [30] N. Kashima, “Time Compression Multiplex Transmission System Using a 1.3μm Semiconductor Laser as a Transmitter and a Receiver,” IEEE Tran. Commun., vol. 40, no. 3, pp. 584-590, March 1992.

    [31] 林宏懋,「使用單顆雷射具備自動發送/接收切換功能」,碩士論文,國立台灣科技大學光電工程研究所,台北(2013)。

    [32] M. M. Rad, K. Fouli, H. A. Fathallah, L. A. Rusch and M. Maier, “Passive optical network monitoring: Challenges and requirements,” IEEE Commun. Magazine, vol. 49, no. 2, pp. S45-S52, Feb. 2011.

    [33] J. Smith and B. Powell, “Optical Wavelength Considerations for NG EPON,” IEEE 802.3 NG EPON Meeting, Indian Wells, CA, Jan. 2014.

    [34] G.984.3: Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification [online], Available: http://www.itu.int/ rec/ T-REC-G.984.3-200803-I/en.

    [35] LUXNET. 1310 nm 1.25/2.5Gbps FP Lasers TO [online]. Available: http://www.luxnetcorp.com.tw/datasheet_files/20100621_65490.pdf.

    [36] Atmel AT89S52 Data Sheet [online], Available: http://www.keil.com / dd/docs/datashts/atmel/at89s52_ds.pdf.

    [37] A. Farahat. (2011) Serial Data Input/Output [online]. Available: http://www.8051-microcontrollers.blogspot.tw/2013/02/serial-data-input#.U3wD0_mSzrQ.

    QR CODE