簡易檢索 / 詳目顯示

研究生: 林文豪
Vincentius - Ochie Arif Sisnandy
論文名稱: 太陽驅動光觸媒Bi20TiO32:光觸媒之合成方法與其水氧化分解
Solar Light Driven Photocatalyst Bi20TiO32: Synthesis and Photocatalytic Activity toward Water Oxidation
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
周澤川
Tse-Chuan Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 86
中文關鍵詞: 光觸媒氧氣鉍鈦氧化物水分解雙光子光觸媒雙槽反應器太陽光驅動
外文關鍵詞: photocatalyst, oxygen, Bi20TiO32, water splitting, Z-scheme, twin reactor, solar light driven
相關次數: 點閱:192下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以硝酸鉍、鈦異丙醇、檸檬酸為起始原料,進行溶膠-凝膠法成功合成可見光驅動之水分解氧化觸媒 Bi20TiO32。溶膠-凝膠法的初始為非晶相,在375oC空氣環境下進行煅燒6小時,並藉由X-ray 光繞射分析、 穿透式電子顯微鏡以及可見光-近紅外光漫反射光譜,進行晶格結構、 晶粒大小以及光吸收特性之鑑定。於溶膠-凝膠法時,檸檬酸與金屬離子之比例增加時會導致Bi20TiO32之晶粒增大,因而降低其氧氣生成之效率。
    本觸媒的催化活性分別在紫外線與可見光光譜下進行活性測定。在實驗中以硝酸銀作為犧牲劑,並在研究中深入探討了犧牲劑濃度與鉑/銥氧化物共觸媒的添加對於其光催化活性之影響。犧牲劑之濃度與氧氣生成量為一線性成長之關係,當銥氧化物含量為0.15 wt%及鉑含量為0.2wt%時可以分別得到最大之氧氣生成量為6.47 mol/min及5.8 mol/min。而當共觸媒於鉑含量0.1 wt%及銥氧化物含量0.11 wt%時,則可以得到最佳之氧氣生成量為7 mol/min。
    此外,在水分解的測試上,以產氧觸媒Bi20TiO32與產氫觸媒CuFeO2,以光沉積法還原石墨烯且添加共觸媒Ru/IrO2進行整合,成功將其導入單槽與雙槽之Z-scheme水分解架構。 於光觸媒含量Bi20TiO32 – CuFeO2分別為 0.1 – 0.1,0.05 – 0.05 及0.03 – 0.03克時,並無任何氣體生成。但分別加入3 wt%之還原石墨烯於兩光觸媒時則可大幅提升其光觸媒活性,於Bi20TiO32 – CuFeO2光觸媒含量為0.015 – 0.015克時可於12小時UV光照射下,生成氣體13.4 mol。最後,以3 wt% 還原石墨烯及共觸媒0.15 wt%銥氧化物及0.2 wt%銣之使用可增進光觸媒之水分解效率,其氫氣產量為2.23 mol/hour,氧氣為1.15 mol/hour。初步結果顯示此系統未來於水分解上之應用潛力。


    Solar light driven water oxidation photocatalyst Bi20TiO32 has been successfully synthesized through sol gel process using bismuth nitrate, titanium isopropoxide and citric acid as starting materials. The amorphous metal oxides resulted from sol gel process was calcined at 375oC for 6 hour under stagnant air. Crystal structure and domain size of Bi20TiO32 were characterized by XRD and TEM. Optical properties of Bi20TiO32 were determined by UV-Visible spectroscopy as well. The increasing of citric acid ratio to the total metal ions increases the grain size of Bi20TiO32 due to more stable complex occurred in sol-gel process which finally decreases the photocatalytic activity oxygen evolution due to decreasing of total surface area.
    Photocatalytic activity for oxygen evolution using silver nitrate as sacrificial agent under UV light and visible light irradiation have also been studied and enhanced by the addition of co-catalyst iridium oxide and platinum to the photocatalyst. The effects of sacrificial agent concentration, iridium oxide and platinum loading have been studied extensively. Increasing sacrificial agent concentration increases the initial rate of oxygen evolution with a linear relationship. Iridium oxide co-catalyst loading only gives maximum initial rate at 0.15 wt% loading while platinum only at 0.2 wt% with initial gas evolution rate 6.47 mol/min and 5.8 mol/min respectively. Loading iridium oxide and platinum co-catalyst simultaneously further increases the initial rate of oxygen evolution to 7 mol/min for 0.11 wt% iridium oxide with 0.1 wt% platinum.
    Furthermore, overall water splitting reaction using Bi20TiO32 in combination with CuFeO2 has also been conducted by Z-scheme process in both single and twin reactor. Single reactor Z-scheme process conducted using only photocatalyst gives no gas evolution for various loading of Bi20TiO32 – CuFeO2 photocatalyst as 0.1 – 0.1, 0.05 – 0.05 and 0.03 – 0.03 gram. Addition of 3 wt% photo-reduced graphene oxide to both photocatalyst can enhance the photocatalytic activity as indicated by evolution of 13.4 mol gas for 12 hour UV illumination using 0.015 –0.015 gram Bi20TiO32 – CuFeO¬2 photocatalyst. Finally, 3 wt% of photo-reduced graphene oxide and co-catalyst 0.15 wt% iridium oxide and 0.2 wt% ruthenium have been used to further enhance photocatalytic activity water splitting resulting on the evolution of 2.23 mol/hour hydrogen and 1.15 mol/hour oxygen. All these initial results reveal that the potential on the application of water splitting.

    ABSTRACT i 摘要 iii ACKNOWLEDGEMENT iv CONTENT v LIST OF TABLE vii LIST OF FIGURE viii CHAPTER 1 INTRODUCTION 1 1.1. Background 1 1.2. Photoelectrochemical Water Splitting (Artificial Photosynthesis) 2 CHAPTER 2 LITERATURE REVIEW AND OBJECTIVES 6 2.1. Basic Principle of Photocatalytic Water Splitting 6 2.2. History and Discovery of Photocatalysts Materials 8 2.3. Photocatalytic Hydrogen or Oxygen Evolution using Sacrificial Agent 10 2.4. Z-Scheme Photocatalytic Water Splitting (Two-Photon System) 12 2.5. Bismuth Titanate Photocatalyst 16 2.6. Sol-Gel Process 18 2.7. Objective and Strategies 21 2.8. Research Mapping 22 CHAPTER 3 EXPERIMENTAL PROCEDURE 24 3.1. Materials 24 3.2. Photocatalyst Synthesis 25 3.3. Co-Catalyst Loading 26 3.4. Characterization of Photocatalysts 28 3.4.1. Thermo-Gravimetric Analysis (TGA) 28 3.4.2. Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 29 3.4.3. X-Ray Diffraction (XRD) 31 3.4.4. Transmission Electron Microscopy (TEM) 32 3.4.5. Scanning Electron Microscopy (SEM) 33 3.4.6. Ultraviolet-Visible Spectroscopy (UV-Vis) 34 3.5. Photocatalytic Activity for Oxygen Evolution 35 CHAPTER 4 RESULTS AND DISCUSSION 38 4.1. Oxygen Evolution Photocatalyst Bi20TiO32 Synthesis Process 38 4.2. Photocatalytic Activity of Bi20TiO32 Photocatalyst 46 CHAPTER 5 OVERALL WATER SPLITTING BASED ON 57 Z-SCHEME PROCESS 57 5.1. Single Reactor Z-Scheme Process 57 5.2. Twin Reactor Z-Scheme Process 59 5.3. Results and Discussion 62 CHAPTER 6 CONCLUSIONS AND SUGGESTIONS 75 6.1. Conclusions 75 6.2. Suggestions 75 BIBLIOGRAPHY 77

    1. Kudo, A. and Y. Miseki, Heterogeneous Photocatalyst Materials for Water Splitting. Chemical Society Reviews, 2008. 38: p. 253-278.
    2. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238: p. 37-38.
    3. Sayama, K. and H. Arakawa, Effect of Na2CO3 Addition on Photocatalytic Decomposition of Liquid Water Over Various Semiconductor Catalys. Journal of Photochemistry and Photobiology A: Chemistry, 1994. 77(2-3): p. 243-247.
    4. Sayama, K. and H. Arakawa, Effect of Carbonate Addition on the Photocatalytic Decomposition of Liquid Water Over ZrO2 Catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 1996. 94(1): p. 67-76.
    5. Zou, J.-J., C.-J. Liu, and Y.-P. zhang, Control of the Metal-Support Interface of NiO-Loaded Photocatalysts via Cold Plasma Treatment. Langmuir, 2006. 22(5): p. 2334-2339.
    6. Kato, H. and A. Kudo, New Tantalate Photocatlysts for Water Decomposition into H2 and O2. Chemical Physics Letters, 1998. 295(5-6): p. 487-492.
    7. Kato, H. and A. Kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K). The Journal of Physical Chemistry B, 2001. 105(19): p. 4285-4292.
    8. Kato, H. and A. Kudo, Photocatalytic Water Splitting into H2 and O2 over Various Tantalate Photocatalysts. Catalysis Today, 2003. 78(1-4): p. 561-569.
    9. Kato, H. and A. Kudo, Highly Efficient Decomposition of Pure Water into H2 and O2 over NaTaO3 Photocatalysts. Catalysis Letters, 1999. 1(2-3): p. 153-155.
    10. Sato, J., N. Saito, H. Nishiyama, and Y. Inoue, Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. I. Influences of Preparation Conditions on Activity. The Journal of Physical Chemistry B, 2003. 107(31): p. 7965-7969.
    11. Sato, J., N. Saito, H. Nishiyama, and Y. Inoue, New Photocatalyst Group for Water Decomposition of RuO2-Loaded p-Block Metal (In, Sn, and Sb) Oxides with d10 Configuration. The Journal of Physical Chemistry B, 2001. 105(26): p. 6061-6063.
    12. Sato, J., H. Kobayashi, and Y. Inoue, Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. II. Roles of Geometric and Electronic Structures. The Journal of Physical Chemistry B, 2003. 107(31): p. 7970-7975.
    13. Sato, J., N. Saito, H. Nishiyama, and Y. Inoue, Photocatalytic Activity for Water Decomposition of RuO2-Loaded SrIn2O4 with d10 Configuration. Chemistry Letters, 2001. 30(9): p. 868-869.
    14. Kato, H., H. Kobayashi, and A. Kudo, Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure. The Journal of Physical Chemistry B, 2002. 106(48): p. 12441-12447.
    15. Kohno, M., S. Ogura, K. Sato, and Y. Inoue, Properties of Photocatalysts with Tunnel Structures: Formation of a Surface Lattice O− Radical by the UV Irradiation of BaTi4O9 with a Pentagonal-Prism Tunnel Structure. Chemical Physics Letters, 1997. 267(1-2): p. 72-76.
    16. Kakihana, M., M. Arima, T. Sato, K. Yoshida, Y. Yamashita, M. Yashima, and M. Yoshimura, Highly Active BaTi4O9/RuO2 Photocatalyst by Polymerized Complex Method. Applied Physics Letters, 1996. 69(14): p. 2053-2055.
    17. Ogura, S., K. Sato, and Y. Inoue, Effects of RuO2 Dispersion on Photocatalytic Activity for Water Decomposition of BaTi4O9 with a Pentagonal Prism Tunnel and K2Ti4O9 with a Zigzag Layer Structure. Physical Chemistry Chemical Physics, 2000(10): p. 2449-2454.
    18. Yarris, L. Getting to the Hydrogen Highway Via the Nano Road. 2009; Available from: http://newscenter.lbl.gov/feature-stories/2009/04/20/hydrogen-highway-nano-road/.
    19. Lo, C.-C., C.-W. Huang, C.-H. Liao, and J.C.S. Wu, Novel Twin Reactor for Separate Evolution of Hydrogen and Oxygen in Photocatalytic Water Splitting. International Journal of Hydrogen Energy, 2010. 35(4): p. 1523-1529.
    20. Takanabe, K., T. Uzawa, X. Wang, K. Maeda, M. Katayama, J. Kubota, A. Kudo, and K. Domen, Enhancement of Photocatalytic Activity of Zinc-Germanium Oxynitride Solid Solution for Overall Water Splitting Under Visible Irradiation. Dalton Transactions, 2009. 2009(45): p. 10055-10062.
    21. Li, Y., G. Ma, S. Peng, G. Lu, and S. Li, Photocatalytic H2 Evolution Over Basic Zincoxysulfide (ZnS1-x-0.5yOx(OHy) Under Visible Light Irradiation. Applied Catalysis A: General, 2009. 363(2): p. 180-187.
    22. Li, X.-B., X.-Y. Jiang, J.-H. Huang, and X.-J. Wang, Photocatalytic Activity for Water Decomposition to Hydrogen over Nitrogen-Doped TiO2 Nanoparticle. Chinese Journal of Chemistry, 2008. 26(12): p. 2161-2164.
    23. Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 2001. 293: p. 269-271.
    24. Fujishima, A., T.N. Rao, and D.A. Tryk, Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Rev., 2000. 1: p. 1-21.
    25. Lachheb, H., E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann, Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylin Blue) in Water by UV-Irradiated Titania. Applied Catalysis B: Environmental, 2002. 39(1): p. 75-90.
    26. Su, W., Y. Zhang, Z. Li, L. Wu, X. Wang, J. Li, and X. Fu, Multivalency Iodine Doped TiO2: Preparation, Characterization, Theoritical Studies, and Visible-Light Photocatalysis Langmuir, 2008. 24(7): p. 3422-3428.
    27. Ollis, D.F., E. Pelizzetti, and N. Serpone, Photocatalyzed Destruction of Water Contaminants. Environmental Science & Technoogy, 1991. 25(9): p. 1522-1529.
    28. Carp, O., C.L. Huisman, and A. Reller, Photoinduced reactvity of Titanium Dioxide. Progress in Solid State Chemistry, 2004. 32(2): p. 33-177.
    29. Hoffmann, M.R., S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 1995. 95(1): p. 69-96.
    30. Wu, J., S. Hao, J. Lin, M. Huang, Y. Huang, Z. Lan, and P. Li, Crystal Morphology of Anatase Titania Nanocrystals Used in Dye-Sensitized Solar Cells. Crystal Growth & Design, 2007. 8(1): p. 247-252.
    31. Yao, W.F., X.H. Xu, J.T. Zhou, X.N. Yang, Y. Zhang, S.X. Shang, H. Wang, and B.B. Huang, Photocatalytic Property of Sillenite Bi24AlO39 Crystals. Journal of Molecular Catalysis A: Chemical, 2004. 212(2): p. 323-328.
    32. K., T. and A. M., Titanium Oxide-Based Photocatalysis: -From Fundamentals to Practical Applications. 7th International Symposium on Eco-Materials Processing and Design, 2006. 510: p. 5.
    33. Kudo, A., Photocatalysis and Solar Hydrogen Production. Pure Applied Chemistry, 2007. 70(11): p. 1917-1927.
    34. Maeda, K. and K. Domen, Nano-Particulate Photocatalysts for Overall Water Splitting under Visible Light. Nanomaterials: Design and Simulation, 2007: p. 301-315.
    35. Keller, V., P. Bernhardt, and F. Garin, Photocatalytic Oxidation of Butyl Acetate in Vapor Phase on TiO2, Pt/TiO2 and WO3/TiO2 Catalysts. Journal of Catalysis, 2003. 215(1): p. 129-138.
    36. Linsebigler, A.L., G. Lu, and J.T. Yates, Photocatalysis on TiO2 Surfaces, Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995. 95(3): p. 735-758.
    37. Yu, J.C., L. Zhang, Z. Zheng, and J. Zhao, Synthesis and Characterization of Phospated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chemistry of Materials, 2003. 15(11): p. 2280–2286.
    38. Sato, J., N. Saito, Y. Yamada, K. Maeda, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, and Y. Inoue, RuO2-Loaded β-Ge3N4 as a Non-Oxide Photocatalyst for Overall Water Splitting. Journal of the American Chemical Society, 2005. 127(12): p. 4150-4151.
    39. Kudo, A., I. Tsuji, and H. Kato, AgInZn7S9 Solid Solution Photocatalyst for H2 Evolution from Aqueous Solutions under Visible Light Irradiation. Chemical Communications, 2002(17): p. 1958–1959.
    40. Yu, J., X. Yu, B. Huang, X. Zhang, and Y. Dai, Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Novel Cage-Like Ferric Oxide Hollow Spheres. Crystal Growth & Design, 2009. 9(3): p. 1474–1480.
    41. Ishikawa, A., T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, Oxysulfide Sm2Ti2S2O5 as a Stable Photocatalyst for Water Oxidation and Reduction under Visible Light Irradiation (λ ≤ 650 nm). Journal of the American Chemical Society, 2002. 124(45): p. 13547–13553.
    42. Wang, X., K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti, A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nature Materials, 2009. 8(1): p. 76-80.
    43. Yu, A., G. Wu, F. Zhang, Y. Yang, and N. Guan, Synthesis and Characterization of N-Doped TiO2 Nanowires with Visible Light Response. Catalysis Letters, 2009. 129(4): p. 507-512.
    44. Zhang, D., R. Qiu, L. Song, B. Eric, Y. Mo, and X. Huang, Role of Oxygen Active Species in the Photocatalytic Degradation of Phenol Using Polymer Sensitized TiO2 under Visible Light Irradiation. Journal of Hazardous Materials, 2009. 163(2): p. 843-847.
    45. Cui, L., F. Huang, M. Niu, L. Zeng, J. Xu, and Y. Wang, A Visible Light Active Photocatalyst: Nano-Composite with Fe-Doped anatase TiO2 Nanoparticles Coupling with TiO2(B) Nanobelts. Journal of Molecular Catalysis A: Chemical, 2010. 326(1): p. 1-7.
    46. Mills, A. and M.A. Valenzuela, Photo-Oxidation of Water Sensitized by TiO2 and WO3 in Presence of Different Electron Acceptors. REVISTA MEXICANA DE FISICA, 2004. 50(3): p. 287-296.
    47. Sasaki, Y., H. Nemoto, K. Saito, and A. Kudo, Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator. Journal of Physical Chemistry C, 2009. 113: p. 17536-17542.
    48. Sayama, K., K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, Stoichiometric Water Splitting into H2 and O2 using a Mixture of Two Different Photocatalysts and an IO3- /I- Shuttle Redox Mediator under Visible Light Irradiation. Chemical Communications, 2001(23): p. 2416-2417.
    49. Sayama, K., K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, A New Photocatalytic Water Splitting System Under Visible Light Irradiation Mimicking a Z-Scheme Mechanism in Photosynthesis. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148: p. 71-77.
    50. Kudo, A., Z-Scheme Photocatalyst Systems for Water Splitting Under Visible Light Irradiation. MRS Bulletin, 2011. 36: p. 32-38.
    51. Lo, C.-C., C.-W. Huang, and C.-H. Liao, Novel Twin Reactor for Separate Evolution of Hydrogen and Oxygen in Photocatalytic Water Splitting. International Journal of Hydrogen Energy, 2010. 35: p. 1523-1529.
    52. Iwase, A., Y.H. Ng, Y. Ishiguro, A. Kudo, and R. Ama, Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of American Chemical Society, 2011. xxx(xxx): p. xxx-xxx.
    53. Lin, X., F. Huang, W. Wang, Y. Xia, Y. Wang, M. Liu, and J. Shi, Photocatalytic Activity of a Sillenite-Type Material Bi25GaO39 Catalysis Communications, 2008. 9(5): p. 572–576.
    54. He, C. and M. Gu, Photocatalytic Activity of Bismuth Germanate Bi12GeO20 Powders. Scripta Materialia, 2006. 54(7): p. 1221-1225.
    55. Hou, L.-R., C.-Z. Yuan, and Y. Peng, Preparation and Photocatalytic Property of Sunlight-Driven Photocatalyst Bi38ZnO58. Journal of Molecular Catalysis A: Chemical, 2006. 252(2): p. 132–135.
    56. Yu, J. and A. Kudo, Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4. Advanced Functional Materials, 2006. 16(16): p. 2163–2169.
    57. Kudo, A., K. Omori, and H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. Journal of the American Chemical Society, 1999. 121(149): p. 11459–11467.
    58. Yu, J., J. Xiong, B. Cheng, Y. Yu, and J. Wang, Hydrothermal Preparation and Visible-Light Photocatalytic Activity of Bi2WO6 Powders. Journal of Solid State Chemistry, 2005. 178(6): p. 1968–1972.
    59. Wu, J., F. Duan, Y. Zheng, and Y. Xie, Synthesis of Bi2WO6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light Induced Photocatalytic Activity. The Journal of Physical Chemistry C, 2007. 111(34): p. 12866–12871.
    60. Tang, J., Z. Zou, and J. Ye, Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Angewandte Chemie International Edition, 2004. 43(34): p. 4463–4466.
    61. Yao, W.F., H. Wang, X.H. Xu, J.T. Zhou, X.N. Yang, Y. Zhang, and S.X. Shang, Photocatalytic Property of Bismuth Titanate Bi2Ti2O7. Applied Catalysis A: General, 2004. 259(1): p. 29-33.
    62. Yao, W.F., H. Wang, X.H. Xu, S.X. Shang, Y. Hou, Y. Zhang, and M. Wang, Synthesis and Photocatalytic Property of Bismuth Titanate Bi4Ti3O12. Materials Letters, 2003. 57(13): p. 1899–1902.
    63. Yao, W.F., H. Wang, X.H. Xu, X.F. Cheng, J. Huang, S.X. Shang, X.N. Yang, and M. Wang, Photocatalytic Property of Bismuth Titanate Bi12TiO20 Crystals. Applied Catalysis A: General, 2003. 243(1): p. 185–190.
    64. Thanabodeekij, N., E. Gulari, and S. Wongkasemjit, Bi12TiO20 Synthesized Directly from Bismuth (III) Nitrate Pentahydrate and Titanium Glycolate and Its Activity. Powder Technology, 2005. 160(3): p. 203–208.
    65. Xiao-Hong, X., Y. Wei-Feng, Z. Yin, Z. Ai-Qiu, H. Yun, and W. Min, Photocatalytic Properties of Bismuth Titanate Compounds. Acta Chimica Sinica, 2005. 63(1): p. 5-10.
    66. Duran, P., F. Capel, C. Moure, M. Villegas, J.F. Fernandez, J. Tartaj, and A.C. Caballero, Processing and Dielectric Properties of the Mixed-Layer Bismuth Titanate Niobate Bi7Ti4NbO21 by the Metal-Organic Precursor Synthesis Method. Journal of the European Ceramic Society, 2001. 21(1): p. 1-8.
    67. Hou, Y., M. Wang, X.-H. Xu, D. Wang, H. Wang, and S.-X. Shang, Dielectric and Ferroelectric Properties of Nanocrystalline Bi2Ti2O7 Prepared by a Metallorganic Decomposition Method. Journal of the American Ceramic Societ, 2002. 85(12): p. 3087–3089.
    68. Zheng, H., B. Huang, Y. Dai, X. Qin, X. Zhang, Z. Wang, and M. Jiang, Visible-Light Photocatalytic Activity of the Metastable Bi20TiO32 Synthesized by a High-Temperature Quenching Method. Journal of Solid State Chemistry 2009. 182: p. 2274–2278.
    69. Sun, X., L. Sun, H. Zhang, and J. Ma, Preparation of Visible-Light Responsive Photocatalyst (Bi20TiO32) and its Photocatalytic Activity for Degrading Organic Pollutants. 2009.
    70. Zhou, T. and J. Hu, Mass Production and Photocatalytic Activity of Highly Crystalline Metastable Single-Phase Bi20TiO32 Nanosheets. Environmental Science & Technoogy, 2010. 44: p. 8698–8703.
    71. Hench, L.L. and J.K. West, The Sol-Gel Process. Chemical Reviews, 1990. 90: p. 33-72.
    72. Sayilkan, F., M. Asilturk, H. Sayilkan, Y. Onal, M. Akarsu, and E. Arpac, Characterization of TiO2 Synthesized in Alcohol by a Sol-Gel Process: The Effects of Annealing Temperature and Acid Catalyst. Turkish Journal of Chemistry, 2005. 29: p. 697-706.
    73. Huang, X., Z. Yang, L. Sun, Q. Xie, B. Li, J. Zhou, and L. Li, Synthesis and Characterization of Potassium Bismuth Titanate Inverse Opal Photonic Crystals by Sol–Gel Technique. Materials science communication, 2009. 114(1): p. 23-25.
    74. Madeswaran, S., N.V. Giridharan, and R. Jayavel, Sol–Gel Synthesis and Property Studies of Layered Perovskite Bismuth Titanate Thin Films. Material science communication, 2003. 80(1): p. 23-28.
    75. Kim, J., J.K. Kim, S. Heo, and H.S. Lee, Ferroelectric Properties of Sol-Gel Prepared La- and Nd-Substituted, and Nb-co-Substituted Bismuth Titanate using Polymeric Additives. Thin Solid Films, 2006. 503(1): p. 60-63.
    76. Kojima, T., I. Yoshida, N. Uekawa, and K. Kakegawa, Effect of Treatment Conditions and Titanium Source on the Hydrothermal Synthesis of Bismuth Titanate Particles. Journal of the European Ceramic Society, 2009. 29(3): p. 431-437.
    77. Misra, S.N., R.S. Shukla, and M.A. Gagnani, Neodymium(III)-Substituted Bismuth Titanate Thin Film Generation Using Metal Alkoxo, Acyloxo, and β-diketonato Precursors Employing a Sol–Gel Route and Using 4f–4f Transition Spectra as Probes to Explore Kinetic Performance. Journal of Colloid and Interface Science, 2004. 271(1): p. 174-180.
    78. Yao, W., C. Huang, N. Muradov, and A. T-Raissi, A Novel Pd-Cr2O3/CdS Photocatalyst for Solar Hydrogen Production Using a Regenerable Sacrificial Donor. International Journal of Hydrogen Energy, 2011. 36(8): p. 4710-4715.
    79. Jang, J.S., D.J. Ham, N. Lakshminarasimhan, W.y. Choi, and J.S. Lee, Role of Platinum-Like Tungsten Carbide as Cocatalyst of CdS Photocatalyst for Hydrogen Production under Visible Light Irradiation. Applied Catalysis A: General, 2008. 346(1-2): p. 149-154.
    80. Zou, J.-J., H. He, L. Cui, and H.-Y. Du, Highly Efficient Pt/TiO2 Photocatalyst for Hydrogen Generation Prepared by a Cold Plasma Method. International Journal of Hydrogen Energy, 2007. 32(12): p. 1762-1770.
    81. Yang, H., L. Guo, W. Yan, and H. Liu, A Novel Composite Photocatalyst for Water Splitting Hydrogen Production. Journal of Power Sources, 2006. 159(5): p. 1305-1309.
    82. Yamazaki, H., A. Shouji, M. Kajita, and M. Yagi, Electrocatalytic and Photocatalytic Water Oxidation to Dioxygen Based on Metal Complexes. Coordination Chemistry Reviews, 2010. 254(21-22): p. 2483-2491.
    83. Hara, M., C.C. Waraksa, J.T. Lean, B.A. Lewis, and T.E. Mallouk, Photocatalytic Water Oxidation in a Buffered Tris(2,2‘-bipyridyl)ruthenium Complex-Colloidal IrO2 System. Journal of Physical Chemistry A, 2000. 104(22): p. 5275-5280.
    84. Youngblood, W.J., S.-H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, and T.E. Mallouk, Photoassisted Overall Water Splitting in a Visible Light-Absorbing Dye-Sensitized Photoelectrochemical Cell. Journal of American Chemical Society, 2009. 131(3): p. 926-927.
    85. Barlier, V., V. Bounor-Legare, G. Boiteux, J. Davenas, and D. Leonard, Hydrolysis–Condensation Reactions of Titanium Alkoxides in Thin Films: A Study of the Steric Hindrance Effect by X-ray Photoelectron Spectroscopy. Applied Surface Science, 2008. 254: p. 5408–5412.
    86. William S. Hummers, J. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of American Chemical Society, 1958. 80(6): p. 1339.
    87. Liang, Y., H.-B. Dai, L.-P. Ma, P. Wang, and H.-M. Cheng, Hydrogen Generation from Sodium Borohydride Solution using a Ruthenium Supported on Graphite Catalyst. International Journal of Hydrogen Energy, 2010. 35: p. 3023-3028.
    88. Periodic Table of Elements: Element Copper - Cu. Available from: http://environmentalchemistry.com/yogi/periodic/Cu.html.
    89. Sung, W.-Y., W.-J. Kim, S.-M. Lee, H.-Y. Lee, Y.-H. Kim, K.-H. Park, and S. Lee, Field Emission Characteristics of CuO Nanowires by Hydrogen Plasma Treatment. Vacuum, 2007. 81: p. 851-856.
    90. Yang, W.-Y. and S.-W. Rhee, Effect of Electrode Material on the Resistance Switching of Cu2O Film. Applied Physics Letters, 2007. 91: p. 232907.

    無法下載圖示 全文公開日期 2016/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE