簡易檢索 / 詳目顯示

研究生: 羅梓誠
Tzu-chen Lo
論文名稱: 數位電力轉換器之設計與研製
Design and implementation of a digital power converter
指導教授: 劉益華
Yi-Hua Liu
口試委員: 羅有綱
Yu-Kang Lo
王順忠
Shun-chung Wang
鄧人豪
Ren-hao Deng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 86
中文關鍵詞: 比例積分控制器模糊比例積分控制器數學公式型比例積 分控制器
外文關鍵詞: Proportional-Integral Controllers, Fuzzy PI Controllers, Formula-Type Fuzzy PI Controller
相關次數: 點閱:246下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

以往,電源供應器的設計使用類比電路設計技術,在過去的十年內"數位式"電源設計也越來越被接受。本論文提出兩種數位式比例積分控制電源轉換器,系統硬體與韌體部分將詳細說明,電源轉換器使用降壓式直流轉直流轉換器,數位控制使用Microchip 公司的微處理器dsPIC。
為了提高數位式電源轉換器的性能,在本文討論兩種數位控制器:傳統的比例積分控制控制器和模糊比例積分控制器。現代工業界中比例積分控制器是最多人熟知和最廣泛應用,一般來說,比例控制器的優點是簡單,可靠和有效率。然而,當系統控制變為非線性時,系統性能會變差。模糊 PI 控制器一般優於傳統的比例積分控制器,特別是在高階、時間延遲、和非線性系統中。因此它的設計方法較先進,所需的計算公式比較複雜。本論文提出數學公式型比例積分控制器,儘管所提出的模糊比例積分控制器其設計仍是基於模糊數學,我們將看到其最終形式將很類似於的控制器。因此它們可以直接用來取代傳統的應用程式且很容易的實現在低成本的微控制器。在本論文中,我們將比較這兩種PI 控制器,並討論其優缺點和侷限性,模擬和實驗結果被用來驗證系統正確性。


For years, power supplies have been designed using analog circuit design techniques. "Digital" power supplies have been designed over the last decade as well, and they have gradually gained more and more acceptance. In this thesis, two PI-controlled digital power converters have been presented. The hardware and firmware parts of the proposed system are described in detail. The power converter utilized in this thesis is a simple buck converter, and the digital controller is implemented using a dsPIC micro-controller from Microchip Corp.
In order to improve the performance of the digital power converter, two kinds of digital controller are discussed in this thesis: classical Proportional-Integral (PI) controllers and fuzzy PI controllers. Conventional PI controllers are perhaps the most well-known and most widely used controllers in modern industries. Generally speaking, PI controllers have the merits of being simple, reliable, and effective.
However, their performance will deteriorate if the system under control becomes nonlinear. Fuzzy PI controllers are generally superior to the conventional ones, particularly for higher-order, time-delayed, and nonlinear systems. However, their design methods are slightly more advanced and their resulting formulas are somewhat more complicated. In this paper, a formula-type fuzzy PI controller is presented. It will be seen that although the presented fuzzy PI controllers are designed by fuzzy mathematics, their final form as controllers are conventional controllers. Therefore, they can be used to directly replace the conventional ones in applications and can be easily implemented using
low cost microcontrollers. In this thesis, we will compare these two classes of PI controllers and discuss their advantages as well as III limitations. Simulation and experimental results will also be provided to verify the correctness of the proposed system.

摘要.......................................................................................................... I Abstract ......................................................................................................II 誌謝...........................................................................................................Ⅴ 目錄...........................................................................................................Ⅵ 圖目錄.......................................................................................................Ⅷ 表目錄.....................................................................................................XII 第一章 前言...............................................................................................1 1.1 數位電源之特色....................................................................................... 1 1.2 本文內容..................................................................................................... 2 1.3 章節簡述..................................................................................................... 3 第二章 降壓式直流轉直流轉換器簡介..................................................4 2.1 降壓式直流轉直流轉換器原理.......................................................... 4 2.2 降壓式直流轉直流轉換器元件值設計範圍.................................. 8 2.3 降壓式直流轉直流轉換器之元件參數設計.................................. 11 2.4 補償器簡介..............................................................................................12 2.4.1 PI 控制器設計… …………………………………...…...13 2.5 討論.......................................................................................................... 14 第三章 數位式降壓轉換器研製........................................................... 15 3.1 降壓式直流轉直流轉換器控制器...................................................15 3.2 降壓式直流轉直流轉換器控制器參數設計................................23 3.3 使用Matlab/Sumlink 模擬PI 控制器.............................................28 3.4 討論...........................................................................................................31 第四章 模糊PI 控制.............................................................................. 32 VII 4.1 模糊理論簡介........................................................................................32 4.2 模糊控制器簡介....................................................................................33 4.3 模糊PI 控制器.......................................................................................34 4.4 數位模糊PI 控制器的設計...............................................................35 4.4.1 傳統模糊PI 控制器.........................................................35 4.4.2 數學公式型模糊PI 控制器.............................................37 4.5 穩定度分析.............................................................................................51 4.5.1 模糊PI 控制系統穩定度分析................................................53 4.6 討論...........................................................................................................55 第五章 模擬與實驗結果........................................................................56 5.1 傳統模糊PI 控制器之模擬模型建構..............................................56 5.2 數學公式型模糊PI 控制器之模擬模型建構................................63 5.3 模擬結果與比較.....................................................................................72 5.4 數位PI 控制型降壓式直流轉換器硬體電路與測量波形........74 5.4.1Microchip dsPIC30F2020 微處理器簡介..........................74 5.4.2 數位PI 型降壓轉換器程式控制流程..............................76 5.4.3 實作測試結果與波形測試................................................77 5.5 討論............................................................................................................82 第六章 結論與未來研究方向................................................................83 6.1 結論...........................................................................................................83 6.2 未來研究方向........................................................................................84 參考文獻............................................................................................85

[1] S. Buso, and P. Mattavelli, “Digital Control in Power Electronics,”
Morgan & Claypool Publishers, 2006.
[2] 劉鳳君,「現代高頻開關電源技術及應用」,電子工業出版社,2008
年。
[3] 王順忠,「電力電子學」,臺灣東華書局股份有限公司, 2001 年。
[4] C. P. Basso, “Switch-Mode Power Supplies,” Mc Graw Hill, 2008.
[5] EPARC,「電力電子學綜論」,全華科技圖書股份有限公司,2007
年。
[6] 原田耕介,鄭振東,「交換式電源手冊」,第二版,全華科技圖書
股份有限公司,2007 年。
[7] R. W. Erickson, D. Maksmovic, “Fundamentals of Power
Electronics,” 2nd Edition, 2000.
[8] N. Mohan, T. M. Undeland, W. Robbins, “Power Electronics
Converters Application and Design,” 3rd Edition, 2003.
[9] G. Chen, and T. T. Pham,” Introduction To Fuzzy Sets, Fuzzy Logic,
And Fuzzy Control Systems,” CRC, 2000.
[10] 王進德、蕭大全,「類神經網路與模糊控制理論入門」,全華科技
圖書股份有限公司,2004 年。
[11] 李允中、王小潘、蘇木春,「模糊理論及其應用」,全華科技圖書
股份有限公司,2004 年。
[12] 王文俊,「認識Fuzzy」第二版,全華科技圖書,2003 年。
[13] 孫宗瀛、楊英魁,「Fuzzy 控制理論實作與應用」修訂版,全華
科技圖書股份有限公司,2007 年。
[14] I. H. Li, W. Y. Wang, S. F. Su and Y. S. Lee, “A Merged Fuzzy
Neural Network and Its Applications in Battery State-of-Charge
86
Estimation,” IEEE Transaction on Energy Conversion, Vol. 22, No.
3, pp.697-708, September 2007.
[15] G. C. Hsieh, L. R. Chen and K. S. Huang, “Fuzzy-Controlled Li-ion
Battery Charge System with Active State-of-Charge Controller,”
IEEE Transactions on Industrial Electronics, Vol. 48, No. 3,
pp.585-593, June 2001.
[16] K. S. Tang, Kim Fung Man, Senior, Guanrong Chen, Sam Kwong,
“An Optimal Fuzzy PID Controller,” IEEE Transactions on
Industrial Electronics, Vol. 48, No. 4, pp.757-746, August 2001.
[17] L.O. Serra, “A Multiobjective Fuzzy PI Controller Based on Genetic
Algorithm,” IEEE Transactions on Industrial Electronics, Vol. 2,
pp.672-577, June 2003.
[18] Q. LI, D. SHEN, “A New Incremental Fuzzy PD+Fuzzy ID Fuzzy
Controller, ” 2009 WASE International Conference on Information
Engineering, Vol. 1, pp.615-619, July 2009.
[19] 劉金琨,「先進PID 控制MATLAB 仿真」第二版,電子工業出
版社,2004 年。
[20] 俞克維,「控制系統分析與設計」,新文京開發出版有限公司,2007
年。
[21] 鈦思科技,「視覺化建模環境 Simulink 入門與進階」,鈦思科技
股份有限公司,2001 年。
[22] Microchip Tech., “dsPIC30F1010/202x,” Data Sheet, Preliminary,
2006.
[23] 曾百由,「微處理機原理與應用C 語言與PIC18 微控制器」,五
南圖書出版股份有限公司,2007 年。

無法下載圖示 全文公開日期 2015/01/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE