簡易檢索 / 詳目顯示

研究生: 王其成
Chi-Cheng Wang
論文名稱: 鑽石刀具應用於超音波加工中的可行性研究
A feasibility study on ultrasonic machining employs the diamond tools
指導教授: 周振嘉
Chen-chia Chou
口試委員: 陳炤彰
Chao-chang Chen
蕭敬業
Ching-Yeh Shiau
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 超音波加工鑽石刀具磨耗
外文關鍵詞: ultrasonic machining, diamomd tools, wear
相關次數: 點閱:242下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

超音波焊接在高分子的黏合應用越來越多,超音波輔助加工也應用於微加工上,但直接使用超音波磨料切削,因其刀具也產生磨耗,故其精度的維持一直無法改善,原因之一為刀具的材質大都為工具鋼和碳化鎢,在高頻率切削下的磨耗率相當大,因此選用硬質刀具或是硬質薄膜鍍在刀具上,降低磨耗率,使加工精度得以控制在一定範圍,將使超音波切削加工應用更為廣泛。
本實驗選擇類鑽碳膜DLC(diamond like Carbone) ,化學沈積鑽石 CVDD(chemical vapor deposition diamond),電著鑽石CPD (composite plating diamond),來製成刀具,觀察其實際磨耗量和與傳統工具鋼和碳化刀具做一比較,評估鑽石膜或是鑽石塊在超音波切削加工中應用的可行性。
在針對磨料硬度對磨耗影響,在此研究結果中,使用較低硬度磨料有助改善刀具磨耗,但效果未達需求。在固定刀具的其他磨耗參數後,使用不同鑽石刀具觀察其磨耗量,實驗結果顯示: (1)在PVD 製程下的DLC刀具因硬度不足無法抵抗高頻率的磨耗,刀具壽命無法有效提升,第一次切削即產生磨耗。(2) CVDD刀具則因缺乏韌性而破裂,且其接面黏結力也不夠,造成膜層剝離,刀具壽命反而最短,開始切削隨即剝離,未達預期目標。(3) CPD刀具則因固持鑽石的金屬鎳被磨光,造成鑽石顆粒整顆脫落,但其刀具壽命已較DLC刀具壽命佳,對於超音波加工精度維持有幫助,是一種較為可行的超音波刀具材料。


More and more applications of ultrasonic welding are used in the bonding of polymer, and ultrasonic assisted machining is also used on micro machining. Due to the wear of tool, the accuracy dimensions are not maintenance and improvement by using abrasive slurry to cut work piece directly. One of reasons is that most of the materials of tools are tool steel and tungsten carbide, which cause a higher wear rate in the circumstances of the high-frequency mechanical motion. To use the tool consisting of using hard material or hard thin film coated on the tool to reduce the wear rate of the blade in ultrasonic machining, and therefore the wear rate can be controlled within a small range. By this scheme, it can expand the range of applications of ultrasonic machining.
After researching proper materials of tools, the diamond is one of the hardest materials in the world that has a great ability to resist the wear. Therefore we use DLC (diamond like Carbon), CVDD (chemical vapor deposition diamond), CPD (composite plating diamond) and PCD (polycrystalline diamond) to make tools. Afterwards we observe its amount of actual wear and compare with tool steel and silicon carbide tool. From these results, we can evaluate the feasibility of applying diamond coating tool or diamond block tool for ultrasonic machining.
Besides, we also study the influence of abrasive hardness on wear rate. The results of this study show that the wear of blade can be reduced by using the lower hardness of abrasive, but the effect is below our demand with bad influence on material removal rate sometimes. We observe the amount of wear by using various diamond blades under fixing other parameters of wear rate. From the results of experiment, they show that (1) the DLC tool in PVD process cannot resist the frequent wear because its hardness is not enough. Therefore it cannot effectively improve the tool life, and it generates wear at the first cutting. (2) Fractures are occurred on CVDD tool due to the lack of toughness, and the films are stripped because the adhesive force of junction is not enough. The films are immediately stripped while begin cutting, so it has the shortest lifetime among these tools. The effect of CVDD tool does not achieve the desired expectation. (3) For CPD tool, the nickel layer used for fixing was polished resulting in whole diamond particle to come off. However, its lifetime is longer than DLC tool. It has the advantage of maintaining the accurate dimensions in ultrasonic machining. Hence CPD is a better feasible material of ultrasonic tool.

摘要……………………...…………….......................................................................Ι Abstract……………………………………………………………………………….II. 致謝……………………………………………………………………………..……IV 目錄………………………………………..……………………………………V 表目錄………………………………………..…………..……………………….. VIII 圖目錄………………………………...……………………………………………IX 第一章 緒論 1.1研究動機與目的……………………………………………………………1 1.2.研究方法與參考資料………………………………………………………3 第二章 基本原理與理論………………………………………………………10 2.1超音波的發展……………………………………………………………10 2.2超音波原理………………………………………………………………10 2.3超音波的應用……………………………………………………………12 2.4超音波的設備組成………………………………………………………13 2.5刀具磨耗及機制…………………………………………………………17 2.5.1機械磨耗…………………………………………………………18 2.5.2化學及氧化磨耗…………………………………………………20 2.6 傳統切削刀具的特性……………………………………………………20 2.7 鑽石刀具的特性…………………………………………………………22 2.7.1 單晶鑽與鑽石粉末結合方式……………………………………22 2.7.2 DLC 類鑽碳膜……………………………………………………26 2.7.3 CVD多晶鑽石刀具………………………………………………29 2.7.4 電著鑽石(複合電鍍)……………………………………………31 第三章 實驗與量測…………………………………………………………………33 3.1 拉曼(Raman)光譜…………………………………………………………35 3.2 維氏(Vickers)硬度實驗…………………………………………………36 3.3 光纖位移計和頻率計量測………………………………………………37 3.4 超音波切削磨耗實驗……………………………………………………38 3.5 掃描式電子顯微鏡SEM(Scanning Electron Microscopy)量測………40 第四章 實驗結果與討論……………………………………………………………41 4.1 傳統刀具的磨耗 …………………………………………………………41 4.1.1 SKD11、WC刀具及PZT的硬度試驗………………………………41 4.1.2 SKD11及WC 刀具使用漿料為SiC的超音波磨耗實驗…………42 4.1.2.1 SKD11及WC刀具使用漿料為SiC時的SEM觀察………43 4.1.2.2 SKD11及WC刀具使用漿料為quartz時的SEM觀察……45 4.2 DLC刀具……………………………………………………………………48 4.2.1 DLC拉曼實驗……………………………………………………49 4.2.2 DLC硬度實驗……………………………………………………51 4.2.3 DLC超音波切削磨耗實驗………………………………………51 4.2.4 DLC的SEM觀察……………………………………………………52 4.3 CVDD(CVD diamond)刀具………………………………………………54 4.3.1 CVDD拉曼實驗……………………………………………………54 4.3.2 CVDD硬度實驗……………………………………………………56 4.3.3 CVDD超音波切削磨耗實驗……………………………………56 4.3.4 CVDD SEM觀察…………………………………………………56 4.4 電著鑽石刀具……………………………………………………………58 4.4.1 電著鑽石硬度實驗………………………………………………58 4.4.2電著鑽石的超音波磨耗實驗……………………………………58 4.4.3電著鑽石(60%)的SEM觀察………………………………………59 4.4.4電著鑽石(80%)的SEM觀察……………………..………………60 4.5 討論………………………………………………………………………63 4.5.1磨料硬度對超音波刀具的磨耗影響……………………………….63 4.5.2刀具硬度對超音波刀具的磨耗影響………………………………64 4.5.3 各種刀具軸向磨耗的SEM觀察…………………………………66 4.5.4刀具接面與漿料問題的探討……………………………………….67 第五章 結論……………………………………………………………………68 參考文獻

1. T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, “Review on ultrasonic machining,” International Journal of Machine tools and Manufacture”, Volume 38, Issue 4, Pages 239-255, (1998 )
2. D.E. Brehl, T.A. Dow, “ Review of vibration-assisted machining,” Precision Engineering, Volume 32, Issue 3, Pages 153-172, (2008)
3. C. Nath, M. Rahman, International Journal of Machine Tools and Manufacture, Volume 48, Issue 9, Pages 965-974, (2008)
4. D.E. Brehl, T.A. Dow, “Review of vibration-assisted machining,” Precision Engineering 32, Pages153–172, (2008)
5. R. Singh, J.S. Khamba, “Ultrasonic machining of titanium and its alloys,” Journal of Materials Processing Technology Volume 173, Pages 125–135, (2006)
6. V.C. Venkatesh, “Maching of glass by impact prosesses,” Journal of Mechanical Working Technology, Volume 8, Pages 247—260, (1983)
7. J.J. Boy, M. Aiguille, A. Boulouize, C. Khan-Malek, “Developments in Micro Ultrasonic Machining, ” Pages 123-126, (2006)
8. M. Adithan, “Tool wear studies in ultrasonic drilling,” Wear, Volume 29, Pages 81–93, (1974)
9. M. Adithan, and V.C. Venkatesh, “Parameter influence on tool wear in ultrasonic drilling,” Tribology Int., Volume 7(6), Pages 260–264, (1974)
10. M. Komaraiah, and P. N. Reddy, “Relative performance of tool materials in ultrasonic machining,” Wear, Volume 161(1-2), pages 1–10, (1993)
11. M. Komaraiah, M. A. Manan, P. Narasimha Reddy, and S. Victor, “Investigation of surface roughness and accuracy in ultrasonic machining,” Precision Engg, (1988)
12. 陳振宇,超音波產生熱應力之探討,國立清華大學動力機械工程學系碩士學位論文,(2004)
13. J.F. Archard, J. Apply.Phys, Volume 24, Pages 981, (1953)
14. http://nfumcae.nfu.edu.tw/ezfiles/33/1033/img/40/170280086.pdf
15. P.S. Weiser, S. Prawer, R.R. Manory etc, “Improved Adhesion of CVD Diamond Films to Steel and WC--Co Substrates,” Surface Coatings Technology. Volume 71, Pages 167-174, (1995)
16. C. Faure, W. Hanni, C. Julia Schmutz, M. Gervanoni, “Diamond-coated tool,” Diamond and Related Materials, volume 8, pages 830–8, (1999)
17. D. Zuo, X. F. Li, M. Wang, L. Li and W.Z. Lu, “Adhesion improvement of CVD diamond film by introducing an electro-deposited interlayer,” Journal of Mechanical Working Technology, Volume 138, Pages 455-45720, (2003)
18. 圖/擷自reynard-food.blogspot.com/2010/12/blog-post_8706.html(2011)
19. B Lux.and R. Haubner. “Diamond for tooling and abrasive,” Diamond and Related materials, Pages 1035~1047, (1992)
20. Chun-Chin Chen, “Study of Diamond-like Nanocomposite Films”, Dissertation for Doctor of Philosophy Graduate School of Chemical Engineering National Cheng Kung University, (1994)
21. 圖/擷自馗鼎科技 www.creating-nanotech.com/ (2011)
22. 圖/擷自Montblanc TimeWalker Dual Carbon雙碳腕錶
www.iwatchome.net/.../montblanc-timewalker-dual-carbon雙碳腕...(2011)
23. 宋健民,超硬材料,全華科技圖書股份有限公司,(2000)
24. P. May, CVD Diamond -a New Technology for the Future?, Endeavour Magazine 19(3), Pages 101-106, (1995)
25. 圖/擷自SECO http://www.secotools.com/en/Global/Products/Milling/Solid-carbide-end-mills/Diamond-coated-tools/ (2011)
26. Letcia W. de Resende, Evaldo J. Corat, Vladimir J. Trava-Airoldi, Nelia F. Leite , “Multi-layer structure for chemical vapor deposition diamond on electroplated diamond tools,” Diamond and Related Materials 10, Pages 332-336, (2001)
27. 圖/擷自三陽機車http://www.pcstore.com.tw/bikecity/M04094621.htm(2011)
28. 許坤明,非傳統加工,全華科技圖書,(2005)
29. M. Komaraiah, P.Narasimha Reddy,“Relative performance of tool materials in ultrasonic machining,” Wear, Volume 161, Issues 1-2, , Pages 1-10, (1993)
30. H. Dam, P. Quist, M.P. Schreiber, “Productivity, surface quality and tolerances in ultrasonic machining of ceramics,” Journal of Materials Processing Technology volume51, pages 358~ 368, (1995)
31. R. W. Wood, and Loomis, “The Physical and Biological Effects of High Frequence Sound Waves of Great Intensity,” Philosophical Magazine, Volume 7, Pages 417-436, (1927)
32. 超音波控制原理http://eshare.stut.edu.tw/EshareFile/2010_4/2010_4_f89b9bdf.pdf (2011)
33. H. L. Rutan, “Ultrasonic Machining,” Optical Fabrication and Test, Montere,
Calif, work performed for the U.S. Department of Energy by the Univ. Calif., Lawrence Livermore National Laboratory, (1984)
34. P.L. Guzzo, A.H. Shinohara, A.A. Raslan, “A comparative study on ultrasonic machining of hard and brittle materials,” J. Brazil Soc. Mech. Sci. Eng. volume26 (1), pages 56–61, (2004)
35. S. F Krar, and E. Ratterman E, “Superabrasives – Grinding and machining,” McGraw Hill, pages12, (1990)
36. E.J. Weller, “Non-traditional machining processes (2nd edn.),” Soc. of Manuf. Engineers, pages, (1984)
37. M. Adithan, V.C. Venkatesh, “Parameter influence on tool wear in ultrasonic drilling.” Tribology Int., volume7(6), pages 260–264, (1974)
38. H. M. Strong, R. M. Chrenko, “Diamond growth rates and physical properties of laboratory-made diamond,” J. Phys. Chem., volume75 (12), pages1838–184, (1971)
39. H. Liu and D.S. Dandy, Diamond Chemical Vapor Deposition, “Nucleation and
Early Growth Stages,” New Jersey, U.S.A., 1995
40. T.C.S. Vandevelde , K. Vandierendonck, M. Van Stappen , W. Du Mong, P. Perremans, “Cutting applications of DLC, hard carbon and diamond films,” Surface and Coatings Technology, volume113, pages 80–85, (1999)
41. F.P. Bundy, H.T. Hall, H.M. Strong and R.H. Wemtorf, Nature, 176, 51. (1955)
42. 林峰,機加工刀具用金剛石複合體的研究,中國中南大學材料博士學位論文,(2009)
43. M. L. Santella, “A Review of Techniques for Joining Advanced Ceramics,” Ceramic Bulletin, volume 71, pages 947-954, (1992)
44. 林舜天, 塊狀鑽石常壓燒結方法,專利說明書,(2000)
45. D. A. Mortimer and M. Nicholas, “The Wetting of Carbon and Carbides by Copper Alloys”, Journal of Materials Science, volume10, pages 1833-1840, (1975)
46. D.C. Ingram, Diamondlike Carbon (DLC): Its Fabrication, Analysis and Modification by Ion Beams, Materials Science Forum, Volume 52 and 53, Pages 475-494, (1989)
47. A. Grill, “Diamond Like Carbon: State of The Art ,” Diamond and Related Material, volune8, pages 428-434, (1999)
48. H. Holleck, H. Schulz, “Advanced layer material constitution”, Thin Solid Films 153 (1987)
49. J. Meneve, E. Delempenear and J. Smeet, “Diamond Films Technol.,” volume 4[1] , page 23, ( 1994 )
50. Htet Seina, Waqar Ahmeda, Mark Jacksonb, Robert Woodwardsc, Riccardo Polinid, Performance and characterisation of CVD diamond coated, sintered diamond and WC–Co cutting tools for dental and micromachining applications,” Thin Solid Films, pages455–461, (2004)
51. 陳嬿伊,不同鉻中間層影響熱燈絲化學氣相沉積法成長鑽石薄膜於含鈷碳化鎢基材之研究,海洋大學機械與機電工程學系碩士學位論文,(2008)
52. Hong-Xia Zhang, Ying-Bing Jiang, Si-ze Yang, Zhangda Lin, Ke-an Feng, “Diamond growth on steel substrates with AL-N interlayer produced by high power plasma streams,” Thin Solid Films, volume349, pages162-164, (1999)
53. 連紹鈞,結合放電與複合電鍍法製作微球狀研磨工具之研究,中央大學機械工程研究所碩士論文,(2007)
54. 圖/擷自 http://www.twi.co.uk/content/jk74.html

無法下載圖示 全文公開日期 2016/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE