簡易檢索 / 詳目顯示

研究生: Muhamad Amirul Haq
Muhamad Amirul Haq
論文名稱: Region Enhanced Edge­-Based Multi-­Class Object Proposal for Self-­Driving Assistant
Region Enhanced Edge­-Based Multi-­Class Object Proposal for Self-­Driving Assistant
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 林昌鴻
Chang-Hong Lin
Peter Chondro
Peter Chondro
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 61
中文關鍵詞: on-road object detectionobject proposalsedge detectionentropy
外文關鍵詞: on-road object detection, object proposals, edge detection, entropy
相關次數: 點閱:328下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • On­road object detection is a critical component in an autonomous driving system. The safety of the vehicle is just as good as the reliability of
    the on­road object detection system. Thus, developing a fast and robust
    object detection algorithm has been the main goal of many automotive industries and institutes. In this paper, we focus on developing a novel object
    proposal algorithm to improve object detection speed. It does so by reducing the number of proposals that has to be evaluated by the classification
    network. The proposed method uses cues from edge­map to obtain scores
    from each candidate proposals and rank them. To improve detection quality and speed, efficient complementary methods using entropy and road
    segmentation are also employed. Finally, in the experimental test using
    KITTI, the proposed method achieves an average of 72.1% recall rate on 4
    classes (pedestrian, cyclist, car, and truck) and 15 milliseconds of run time,
    surpassing other object proposal algorithms.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Objectness Score . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Edge­based Object Proposal . . . . . . . . . . . . . . . . 9 2.3 Image Entropy . . . . . . . . . . . . . . . . . . . . . . . 12 3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Image Denoising and Edge Detection . . . . . . . . . . . 16 3.2 Road segmentation . . . . . . . . . . . . . . . . . . . . . 17 3.3 Region Division and Entropy Measurement . . . . . . . . 19 3.4 Proposal Scoring and Ranking . . . . . . . . . . . . . . . 24 3.5 Non­maximum Suppression . . . . . . . . . . . . . . . . 27 4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 28 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 28 4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 31 4.3 Effect of Region Enhancement . . . . . . . . . . . . . . . 32 4.4 Comparison with State­of­the­Art . . . . . . . . . . . . . 36 4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 42 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    [1] Z. Sun, G. Bebis, and R. Miller, “On­road vehicle detection: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 694–711, May 2006.
    [2] M. Ryan, “The Future of Transportation: Ethical, Legal, Social and
    Economic Impacts of Self­driving Vehicles in the Year 2025,” Science
    and Engineering Ethics, Sept. 2019.
    [3] J. Cheng, Z. Xiang, T. Cao, and J. Liu, “Robust vehicle detection using 3D Lidar under complex urban environment,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 691–
    696, May 2014. ISSN: 1050­4729.
    [4] S. Sivaraman and M. M. Trivedi, “Looking at Vehicles on the Road:
    A Survey of Vision­Based Vehicle Detection, Tracking, and Behavior
    Analysis,” IEEE Transactions on Intelligent Transportation Systems,
    vol. 14, pp. 1773–1795, Dec. 2013.
    [5] A. Mukhtar, L. Xia, and T. B. Tang, “Vehicle Detection Techniques
    for Collision Avoidance Systems: A Review,” IEEE Transactions
    on Intelligent Transportation Systems, vol. 16, pp. 2318–2338, Oct.
    2015.
    [6] S. Sivaraman and M. M. Trivedi, “A review of recent developments
    in vision­based vehicle detection,” in 2013 IEEE Intelligent Vehicles
    Symposium (IV), pp. 310–315, June 2013. ISSN: 1931­0587.
    45
    [7] Y. Kang, H. Yin, and C. Berger, “Test Your Self­Driving Algorithm:
    An Overview of Publicly Available Driving Datasets and Virtual Testing Environments,” IEEE Transactions on Intelligent Vehicles, vol. 4,
    pp. 171–185, June 2019.
    [8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
    “Object Detection with Discriminatively Trained Part­Based Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627–1645, Sept. 2010.
    [9] J. Hosang, R. Benenson, P. Dollár, and B. Schiele, “What Makes for
    Effective Detection Proposals?,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, pp. 814–830, Apr. 2016.
    [10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R­CNN: Towards
    Real­Time Object Detection with Region Proposal Networks,” in Advances in Neural Information Processing Systems 28 (C. Cortes, N. D.
    Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds.), pp. 91–99,
    Curran Associates, Inc., 2015.
    [11] T.­Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
    “Feature Pyramid Networks for Object Detection,” pp. 2117–2125,
    2017.
    [12] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
    2017 IEEE Conference on Computer Vision and Pattern Recognition
    (CVPR), pp. 6517–6525, July 2017. ISSN: 1063­6919.
    [13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.­Y. Fu, and
    A. C. Berg, “SSD: Single Shot MultiBox Detector,” in Computer Vi46
    sion–ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.),
    (Cham), pp. 21–37, Springer International Publishing, 2016.
    [14] M.­M. Cheng, Y. Liu, W.­Y. Lin, Z. Zhang, P. L. Rosin, and P. H. S.
    Torr, “BING: Binarized normed gradients for objectness estimation
    at 300fps,” Computational Visual Media, vol. 5, pp. 3–20, Mar. 2019.
    [15] J. Carreira and C. Sminchisescu, “CPMC: Automatic Object Segmentation Using Constrained Parametric Min­Cuts,” IEEE Transactions
    on Pattern Analysis and Machine Intelligence, vol. 34, pp. 1312–
    1328, July 2012.
    [16] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
    Smeulders, “Selective Search for Object Recognition,” International
    Journal of Computer Vision, vol. 104, pp. 154–171, Sept. 2013.
    [17] J. Pont­Tuset, P. Arbeláez, J. T. Barron, F. Marques, and J. Malik, “Multiscale Combinatorial Grouping for Image Segmentation and
    Object Proposal Generation,” IEEE Transactions on Pattern Analysis
    and Machine Intelligence, vol. 39, pp. 128–140, Jan. 2017.
    [18] X. Yuan, S. Su, and H. Chen, “A Graph­Based Vehicle Proposal Location and Detection Algorithm,” IEEE Transactions on Intelligent
    Transportation Systems, vol. 18, pp. 3282–3289, Dec. 2017.
    [19] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the Objectness of
    Image Windows,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, pp. 2189–2202, Nov. 2012.
    [20] C. L. Zitnick and P. Dollár, “Edge Boxes: Locating Object Proposals
    from Edges,” in Computer Vision –ECCV 2014 (D. Fleet, T. Pajdla,
    47
    B. Schiele, and T. Tuytelaars, eds.), vol. 8693, pp. 391–405, Cham:
    Springer International Publishing, 2014.
    [21] Q. Wu, H. Li, F. Meng, and K. N. Ngan, “Generic Proposal Evaluator: A Lazy Learning Strategy Toward Blind Proposal Quality Assessment,” IEEE Transactions on Intelligent Transportation Systems,
    vol. 19, pp. 306–319, Jan. 2018.
    [22] H. Kuang, L. Chen, L. L. H. Chan, R. C. C. Cheung, and H. Yan, “Feature Selection Based on Tensor Decomposition and Object Proposal
    for Night­Time Multiclass Vehicle Detection,” IEEE Transactions on
    Systems, Man, and Cybernetics: Systems, vol. 49, pp. 71–80, Jan.
    2019.
    [23] X. Yuan, X. Cao, X. Hao, H. Chen, and X. Wei, “Vehicle Detection by
    a Context­Aware Multichannel Feature Pyramid,” IEEE Transactions
    on Systems, Man, and Cybernetics: Systems, vol. 47, pp. 1348–1357,
    July 2017. Conference Name: IEEE Transactions on Systems, Man,
    and Cybernetics: Systems.
    [24] Y. Xu, X. Cao, and H. Qiao, “An Efficient Tree Classifier Ensemble­Based Approach for Pedestrian Detection,” IEEE Transactions
    on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41,
    pp. 107–117, Feb. 2011. Conference Name: IEEE Transactions on
    Systems, Man, and Cybernetics, Part B (Cybernetics).
    [25] P. Dollár and C. L. Zitnick, “Structured Forests for Fast Edge Detection,” in 2013 IEEE International Conference on Computer Vision,
    pp. 1841–1848, Dec. 2013. ISSN: 2380­7504.
    48
    [26] Y. Song, Y. Ju, K. Du, W. Liu, and J. Song, “Online Road Detection
    under a Shadowy Traffic Image Using a Learning­Based Illumination­Independent Image,” Symmetry, vol. 10, p. 707, Dec. 2018.
    [27] F. Hermosillo­Reynoso, D. Torres­Roman, J. Santiago­Paz, and
    J. Ramirez­Pacheco, “A Novel Algorithm Based on the Pixel­Entropy
    for Automatic Detection of Number of Lanes, Lane Centers, and Lane
    Division Lines Formation,” Entropy, vol. 20, p. 725, Oct. 2018.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 2024/08/20 (校外網路)
    全文公開日期 2024/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE