簡易檢索 / 詳目顯示

研究生: 吳政霖
Cheng-lin Wu
論文名稱: 新四維度Lornez-Srenflo渾沌系統之渾沌動力分析、廣義同步及電路實現
Chaotic Dynamic Analysis, Generalized Chaos Synchronization and Circuit Imeplementation of New Four-Dimensions Lorenz-Stenflo Chaotic System
指導教授: 楊振雄
Cheng-Hsiung Yang
口試委員: 陳金聖
Chin-sheng Chen
郭永麟
Yong-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: Lorenz-Stenflo 系統廣義渾沌同步T-S 模糊控制像素置亂影像加密熵值
外文關鍵詞: Lorenz-Stenflo system, Generalized chaos synchronization, T-S fuzzy control, Pixel shuffle, Image encryption, Entropy
相關次數: 點閱:398下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

基於Lorenz系統,Stenflo通過使用低頻近似短波長研究大氣波動方程,衍生而出的Lorenz-Stenflo模型,在考慮此系統之各種物理特性下,嘗試變動原動態方程組,命名為新四維度Lorenz-Stenflo系統,進一步運用一些動力系統分析,如Lyapunov 指數、bifurcation、Poincare map、平衡點分析、散度分析、相圖等方式分析此新系統的各種特性以及運動方式圖形,再將此系統以電路模擬軟體Multisim模擬實際電路,來比較數值分析與電路模擬之相似度,也以製作實際電路為最終目的,繼而觀察此系統之運動特性。
設計同步控制器,使得從系統與主系統同步,研究控制器包含適應性同步控制、廣義同步、GYC同步控制以及T-S模糊同步控制,本論文也將應用渾沌系統於影像像素行列置亂加密,主要用於在訊號傳輸之過程中增加安全性,最後在探討圖像的熵值及相關係數。


Based on the Lorenz system, Stenflo used the short-wavelength to study atmospheric wave equation. The system is known better as the Lorenz-Stenflo system.
The thesis present the modified of the Lorenz-Stenflo system, call it New Four-Dimension Lorenz-Stenflo system which use some power system analysis ways, such as Lyapunov exponent, bifurcation, Poincare map, equilibrium analysis, divergence analysis, phase diagram. The main goal is to make the actual circuit in real to analysis the chaotic motion graphics, and the motion characteristics of the system compare with simulation by Multisim.
The design of Adaptive synchronous controller, generalized chaos synchronous controller, GYC synchronous controller and the T-S fuzzy synchronous controller use New Four-Dimension Lorenz-Stenflo system in order to synchronize the main system and slave system. This thesis also apply the New Four-Dimension Lorenz-Stenflo system on image pixels rank set encryption, which is used in the process of signal transmission and encryption on the image. In addition, the entropy encryption, scrambling degree and the correlation coefficient of the image are also analyzed.

致謝I 中文摘要II AbstractIII 目錄IV 圖目錄VI 表目錄XI 第1章緒論1 1.1.前言1 1.2.研究動機2 第2章渾沌動力學之新四維度Lorenz-Stenflo系統3 2.1.新四維度Lorenz-Stenflo系統的相圖3 2.2.新四維度Lorenz-Stenflo系統的平衡點分析4 2.3.新四維度Lorenz-Stenflo系統的散度分析5 2.4.新四維度Lorenz-Stenflo系統的頻譜分析6 2.5.新四維度Lorenz-Stenflo系統的Poincare map6 2.6.新四維度Lorenz-Stenflo系統的分歧圖6 2.7.新四維度Lorenz-Stenflo系統的Lyapunov指數及Lyapunov維度7 2.8.新四維度Lorenz-Stenflo系統的電子電路模擬7 2.9.新四維度Lorenz-Stenflo系統的電子電路實作結果8 第3章新四維度Lorenz-Stenflo系統的渾沌同步42 3.1.新四維度Lorenz-Stenflo系統的適應性同步42 3.2.適應性控制用於新四維度Lorenz-Stenflo系統的廣義同步44 3.3.適應性控制用於變動渾沌參數之新四維度Lorenz-Stenflo系統的廣義同步47 3.4.新四維度Lorenz-Stenflo系統的適應性同步使用GYC部分區域穩定理論50 3.5.適應性控制用於新四維度Lorenz-Stenflo系統的廣義同步使用GYC部分區域穩定理論53 3.6.適應性控制用於變動渾沌參數之新四維度Lorenz-Stenflo系統的廣義同步使用GYC部分區域穩定理論56 第4章基於LMI的T-S 模糊新四維度Lorenz-Stenflo系統的穩定性於同步控制72 4.1.新四維度Lorenz-Stenflo渾沌系統之T-S模糊模型72 4.2.新四維度Lorenz-Stenflo渾沌系統的模糊渾沌控制73 4.3.新四維度Lorenz-Stenflo渾沌系統的模糊同步控制76 第5章渾沌系統應用於影像像素置亂加密86 5.1.研究過程與方法86 5.2.影像加密步驟87 5.3.影像解密步驟88 5.4.基於熵值與相關係數分析討論置亂程度與安全性88 5.5.實驗結果與分析89 第6章結論102 參考文獻103

[1]網址:http://zh.wikipedia.org/混沌理論
[2]Lorenz E. N., ”Deterministic Nonperiodic Flow”, J. Atmos. Sci., vol. 20, pp. 130–141., 1963.
[3]Stenflo L., “Generalized Lorenz equations for acousticgravity waves in the atmosphere”, Phys. Scr., vol. 53, pp. 83-84.,1996.
[4]Frederickson P., Kaplan J.-L., Yorke E.-D., Yorke J.-A., “The liapunov dimension of strange attractors”, Journal of Differential Equations, vol. 49(2), pp. 185-207., 1983.
[5]Lian K.-Y., Liu P., Chiang T.-S., Chiu C.-S., “Adaptive synchronization design for chaotic systems via a scalar during signal”, IEEE Circuits & Systems Society, vol. 49(1), pp. 17-27., 2002.
[6]Gao Y., Weng J., Luo X.-S., Fang J., “Generalized synchronization of hyperchaotic circuit”, Journal of Electronics & Information Technology, vol. 24(6), pp. 855-859. , 2002.
[7]Park C.-W., Lee C.-H., Park M., “Design of an adaptive fuzzy model based controller for chaotic dynamics in Lorenz systems with uncertainty”, Inform. Sci., vol. 147, pp. 245-266., 2002.
[8]Chen L., Chen G., Lee Y.-W., “Fuzzy modeling and adaptive control of uncertain chaotic systems”, Inform. Sci., vol. 121, pp.27-37., 1999.
[9]Lian K.-Y., Chiu C.-S., Chiang T.-S., Liu P., “LMI-based fuzzy chaotic synchronization and communications”, IEEE Trans. Fuzzy Systems, vol. 9(4), pp. 539-553., 2001.
[10]Takagi T., Sugeno M., “Fuzzy identification of systems and its applications to modeling and control”, IEEE Trans. Systems Man Cybernet., vol. 15(1), pp. 116-132., 1985.
[11]Tanaka K., Wang H.O., “Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach”, Wiley, New York, 2001.
[12]Zhang H. X., Qiu P. L., “Application of shuffling techniques within watermarking”, Journal of Circuit and System, vol. 6(3), pp. 33-36.,2001.
[13]Zhu C. X., Chen Z. G., Ouyang W. W., “A new image encryption algorithm based on general Chen’s chaotic system”, Journal of Central South University( Science and Technology)., vol. 37(6), pp. 1142-1148, 2006.
[14]Zhang W., He R. C., “An encryption and hiding algorithm based on Logistic chaotic sequences”, Journal of Lanzhou Jiaotong University (Natural Sciences)., vol. 25(4), pp. 80-82., 2006.
[15]Yong F., L. Linjing, H. Feng, “A Symmetric Image Encryption Approach based on Line Maps”, 1st International Symposium on, Systems and Control in Aerospace and Astronautics, pp. 1362-1367, 2006.
[16]Sun Z. J., Chen Y. X., Wang Y. X. and Liao X. F., “New image encryption algorithm based on Chua’s circuit”, Computer Engineering and Design., vol. 28(14), pp. 3328-3330., 2007.
[17]Nien H. H., Changchien S. K., Huang C. K., Teng C. P, Chan C. H, “Pixel shuffle for color image encryption based on chaotic variable sequences”, National Changhua University of Education, vol. 28(1), pp. 01-12, 2008.
[18]Kullback S. “Information Theory and Statistics”, New York: John Wiley Press, 1959.
[19]Chen Y.-M., Zhang S.-Y., “Digital Image Scrambling Degree Evaluation Method Based on Cross-entropy, Journal of Image and Graphics, vol. 12(6), pp. 997-1001., 2007.
[20]Shannon C. E., “A Mathematical Theory of Communication”, Journal of The Bell System Technical, vol. 27, pp. 379–423, 623–656, July, October, 1948.
[21]Liu C. X., Liu T., Liu L., “A new chaotic attractor”, Journal of Chaos, Solitons and Fractals, vol. 22(5), pp. 1031-1038., 2004.
[22]Takagi T., Sugeno M., “Fuzzy identification of systems and its application to modeling and control”, IEEE Trans. On Syst. Man, Cybern, vol. 15(1), pp. 116-132., 1985.
[23]Khaber F., Zehar K., Hamzaoui A., “State feedback controller design via Takagi-Sugeno fuzzy model: LMI approach”, Int. J. of Computatinal Intrlligence, vol. 2(2), pp. 148-153., 2005.
[24]Femat, R. , Ramirze, J. A., Anaya, G. F. , “Adaptive synchronization of high-order chaotic systems: A feedback with low-order parameterization”, Physica D, vol. 139, pp. 231-246., 2000.

無法下載圖示 全文公開日期 2018/07/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE