簡易檢索 / 詳目顯示

研究生: 黃昱翔
Yu-hsiang Huang
論文名稱: 使用CMOS及GIPD製程研製毫米波寬頻平衡-不平衡轉換器
Development of Millimeter-Wave Broadband Baluns using CMOS and GIPD Fabrication Processes
指導教授: 曾昭雄
Chao-hsiung Tseng
口試委員: 黃建彰
Chien-chang Huang
馬自莊
Tzyh-ghuang Ma
王蒼容
Chun-long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 41
中文關鍵詞: CMOSGIPD平衡-不平衡轉換器
外文關鍵詞: CMOS, GIPD, Baluns
相關次數: 點閱:193下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文係使用CMOS(Complementary metal-oxide-semiconductor)及GIPD (glass integrated passive device)製程研製毫米波寬頻平衡-不平衡轉換器,主要採用兩耦合器組成之馬群平衡-不平衡轉換器電路架構實現。當兩耦合器間之連接線非零長度時,將影響平衡-不平衡轉換器之操作頻率及頻寬。本論文將使用S參數推導兩耦合器間加入連接線後的平衡-不平衡轉換器設計公式。此外,該公式將一併考慮使用高耦合量耦合器實現平衡-不平衡轉換器之情況。本論文所設計之平衡-不平衡轉換器使用國家晶片中心所提供的TSMC CMOS 0.18 μm與TMT GIPD製程製作,並完成晶片量測。由模擬與量測吻合之結果得知,使用高耦合量之耦合器研製之平衡-不平衡轉換器可獲致縮小電路且寬頻之效果。


The aim of this thesis is to use the CMOS (Complementary metal-oxide-semiconductor) and GIPD (glass integrated passive device) processes for the millimeter-wave broadband balun development. The Marchand balun architecture realized by two quadrature couplers is adopted in this thesis As the connecting line between two couplers is non-zero, it will lead to the significant frequency shift and
bandwidth degradation.
In this thesis, the S-parameters will be employed to derive the design formulas of the balun with considering the effect of the connecting line. In addition, the formulas will be considering the case of using the high coupling-coefficient couplers to implement the balun. The developed baluns are fabricated by the TSMC 0.18 μm CMOS and GIPD processes provided by the CIC and completely measured. The results demonstrate that using the high coupling-coefficient couplers to develop a balun can effectively reduce circuit size and broadband enhance the bandwidth.

摘要 Abstract 目錄 第一章 緒論 1.1 研究動機與目的 1.2 文獻探討 第二章 馬群平衡-不平衡轉換器 2.1理想馬群平衡-不平衡轉換器之轉換器S參數推導 2.2考慮兩耦合器間連接線之馬群平衡-不平衡轉換器S參數推導 2.2.1耦合器之偶模態阻抗對平衡-不平衡轉換器之效能影響 2.2.2連接線阻抗對平衡-不平衡轉換器之效能影響 2.2.3連接線電氣長度對平衡-不平衡轉換器之效能影響 第三章 使用CMOS及GIPD電路製程研製馬群平衡-不平衡轉換器 3.1使用CMOS製程研製馬群平衡-不平衡轉換器 3.1.1使用Type-A結構設計平衡-不平衡轉換器 3.1.2使用Type-B耦合器結構設計平衡-不平衡轉換器 3.2使用TMT GIPD製程研製馬群平衡-不平衡轉換器 第四章 結論 參考文獻

[1]C.-I. Shie, Y.-H. Pan, K.-S. Chin and Y.-C. Chiang, “A miniaturized microstip balun constructed with two λ/8 coupled lines and a redundant line,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 12, pp. 663-665, Dec. 2010.
[2]Nguyen, C. and D. Smith, “Novel miniaturised wideband baluns for MIC and MMIC applications, ” Electronics Letters, Vol. 29, No. 12, 1060-1061, Jun. 1993.
[3]Z.-Y. Zhang, Y.-X. Guo, L.-C. Ong, and M. Y. W. Chia, “A new planar Marchand balun,” IEEE MTT-S Int. Dig., pp. 1971–1974, Jun. 2005.
[4]C. Y. Ng, M. Chongcheawchamnan, and I.D. Robertson, “Analysis and design of a high-performance planar Marchand balun,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 113–116, Jun. 2002.
[5]C.-H. Tseng and Y.-C. Hsiao, “A new broadband Marchand balun using slot-coupled microstrip lines,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 157-159, Mar. 2010.
[6]T. G. Ma and Y.-T. Cheng, “A miniaturized multilayered marchand balun using coupled artificial transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 7, pp. 446-448, Jul. 2009.
[7]C. Liu and W. Menzel, “Broadband via-free microstrip balun using metamaterial transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 437–439, Jul. 2008.
[8]C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multi-conductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. on Microw. Theory and Tech., vol. 55, no. 6, pp. 1190-1199, Jun. 2007.
[9]H.-K. Chiou and J.-Y. Lin, “Symmetric offset stack Balun in standard 0.13 μm CMOS technology for three broadband and low-loss balanced passive mixer designs,” IEEE Trans. Microw. Theory Tech., vol.59, no.6, pp.1529-1538, Jun. 2001.
[10]H.K. Chiouand and T.Y. Yang, “Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp.835–848, Apr. 2008.
[11]W. R. Eisenstadt et al., “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon., Hybrids, Manufact. Tech., vol. 15, pp. 483-490, Aug. 1992.
[12]P. S. Wu, H. Y. Chang, M. D. Tsai, T. W. Huang, and H. Wang, “New miniature 15–20-GHz continuous-phase/amplitude control MMICs using 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 10–19, Jan. 2006.
[13]W.-Z. Chen, W.-H. Chen and K.-C. Hsu, “Three-dimensional fully symmetric inductors, transformer, and balun in CMOS technology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 7, pp. 1413–1423, Jul. 2007.
[14]J. X. Liu, C. Y. Hsu, H. R. Chung, and C. Y. Chen, “A 60-GHz millimeter-wave CMOS Marchand balun,” IEEE RFIC Symp. Dig., pp. 445–448, Jun. 2007.
[15]C.H. Huang, T.S. Horng, C.C. Wang, C.T. Chiu, and C.P. Hung, "Optimum design of transformer-type Marchand balun using scalable integrated passive device technology,” IEEE Trans. Comp. Packag. Technol., vol. 2, no. 8, pp. 1370-1377, Aug. 2012.
[16]Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 182–184, Apr. 1999.
[17]Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “Spiral transmission-line baluns for RF multichip module packages,” IEEE Trans. Adv. Packag., vol. 22, no. 3, pp. 332–336, Aug. 1999.

QR CODE