簡易檢索 / 詳目顯示

研究生: 曾子凌
Zi-Ling Zeng
論文名稱: 具自驅動仙人掌刺仿生結構之微流道表面增強拉曼晶片於生醫及環境檢測之應用
Application of Cactus Spine-Like Bioinspired Raman Enhancing Microfluidic Chip with Self-Driving Capability in Biomedicine and Environmental Detection
指導教授: 楊銘乾
Ming-Chien Yang
劉定宇
Ting-Yu Liu
口試委員: 鄭詠馨
Yung-Hsin Cheng
劉定宇
Ting-Yu Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 93
中文關鍵詞: 熱蒸鍍表面增強拉曼散射(SERS)檢測有機共軛分子仿生結構轉印環境污染檢測
外文關鍵詞: self-driving capability, thermal evaporation plating, organic conjugated molecules, bioinspired nanostructure
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究開發了一種具單向自驅動性的仿生仙人掌刺(cactus spine, CS)結構之微流道表面增強拉曼(SERS)晶片,可應用於生物分子及環境毒物快速臨場檢測。仙人掌刺可以在沙漠中高效蓄積水氣、快速集水並傳輸至根部,本研究以此為發想製作自驅動感測晶片以簡化微流控動力系統。首先利用黃光微影製程複製出仿仙人掌刺微結構於玻璃基板上。在螢光流速測試中證實,最佳化曝光顯影參數所製作之CS微流道可以在無外加幫浦驅動情況下,可以9.83 mm/s之流速自動傳輸螢光溶液通過微流道流至末端。然後再以熱蒸鍍法將有機共軛分子(α,ω- diperfluorohexylquaterthiophene,DFH-4T)及金奈米粒子沉積於微流道末端之玻璃基板,製作具高電磁熱點之常春藤狀的奈米結構作為SERS檢測區。最佳之8 nm 奈米金與1.6 μm DFH-4T沉積參數之常春藤狀SERS晶片成功檢出食安毒物羅丹明B及蘇丹四號,最低檢測濃度可達0.625 ppm。最後製作了相分離微流體SERS晶片並證實可藉親疏水特性與通道效應分離油水相,再以SERS成功檢出水相中之亞甲藍。本研究結果顯示,此仿生CS微流道晶片具有自驅相分離與SERS快速檢測之雙功能,具快速樣本前處理與臨場檢測之潛力。


In this study, a microfluidic integrated surface-enhanced Raman (SERS) chip with a bioinspired cactus spine with unidirectional transport and self-driving was developed for the rapid on-site detection of biomolecules and environmental toxicants. Cactus spines (CS) can effectively accumulate vapor in the desert, quickly collect water, and transport them to the roots, inspiring the study to fabricate self-driving sensors without microfluidic pump systems. First, the study fabricated biomimetic CS mucrostructure on glass substrates via photolithography. In the fluorescence flow rate test, the results confirmed CS microfluidic chips made by optimizing the exposure and development parameters could automatically transport the fluorescent solution to the channel ends at a flow rate of 9.83 mm/s without external pump drives. Furthermore, organic conjugated molecules (α,ω-diperfluorohexylquaterthiophene, DFH-4T) and gold nanoparticles were deposited via thermal evaporation on the microchannel ends glass as SERS detection area, performing ivy-like nanostructures with high electromagnetic hotspots. Optimized parameters of ivy-like SERS chips with 8 nm Au and 1.6 μm DFH-4T successfully detected two food safety toxicants (rhodamine B and Sudan IV), and limitation detection was as low as 0.625 ppm. Finally, the study developed phase-separation microfluidic SERS chips. The results confirmed that the oil-water phase could be separated by hydrophilic/hydrophobic properties and channel effect, and then successfully detected methylene blue using SERS nanotechnology in the water phase.This study showed that the biomimetic CS microfluidic SERS chips have the dual functions of self-driven phase separation and SERS rapid detection, which have the potential for rapid sample pretreatment and on-site detection.

誌謝 I 中文摘要 II 英文摘要 III 第一章 緒論(Introduction) 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 (Literature) 4 2.1 生物結構 4 2.2 黃光微影製程 10 2.3 雷射雕刻機 15 2.4 熱蒸鍍法 17 2.5 微流道 22 2.6 油水過濾 24 2.7 拉曼光譜 25 2.7.1表面增強拉曼光譜簡介 26 2.7.2表面增強拉曼光譜應用 29 第三章 實驗 (Experiment) 32 3.1實驗材料 32 3.2實驗設備 33 3.3 實驗流程 34 3.4 實驗原理及方法 35 3.4.1原理 35 3.4.2實驗設計 35 3.4.3 基板製作方式 36 3.4.4熱蒸鍍 41 3.4.5組裝 43 3.4.6 實驗分析 44 3.4.6.1 表面增強拉曼光譜 44 3.4.6.2 水接觸角 44 3.4.6.3 流速測定分析 44 3.4.6.4 油水分離實驗 45 第四章 結果討論 (Results and Discussion) 46 4.1 仿生仙人掌刺結構之微流道 46 4.1.1 掃描電子顯微鏡(Scanning Electron Microscope,SEM) 46 4.1.2 流速影像圖 49 4.1.3 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope,FE-SEM) 54 4.1.4 X光繞射儀(X-ray diffractometer,XRD) 55 4.1.5 表面增強拉曼光譜(Surface-enhanced Raman spectroscopy,SERS) 56 4.2 仿生仙人掌刺結構之微流道對於油水分離測試 67 4.2.1 無仙人掌刺仿生結構之初步油水分離測試 67 4.2.2 仙人掌刺仿生結構之初步油水分離測試 69 第五章 結論 72 參考文獻 73

[1] B. Campanella, J. Botti, T. Cavaleri, F. Cicogna, S. Legnaioli, S. Pagnotta, F. Poggialini, T. Poli, D. Scalarone, and V. Palleschi, “The shining brightness of daylight fluorescent pigments: Raman and SERS study of a modern class of painting materials,” Microchemical Journal, vol. 152, pp. 104292, 2020.
[2] D. Shao, S. Bi, R. Zhao, X. Sun, X. Li, and J. Yu, “Selective determination of dinitolmide and toltrazuril by surface-enhanced raman spectroscopy (SERS) using AgNPs as substrate,” Sensors and Actuators B: Chemical, vol. 307, pp. 127644, 2020.
[3] R. Singh, “CV Raman and the Discovery of the Raman Effect,” Physics in Perspective, vol. 4, pp. 399-420, 2002.
[4] P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem., vol. 1, pp. 601-626, 2008.
[5] J. H. Choi, W. A. El-Said, and J.-W. Choi, “Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor,” Applied Surface Science, vol. 506, pp. 144669, 2020.
[6] B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Materials today, vol. 15, no. 1-2, pp. 16-25, 2012.
[7] D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Analytical and bioanalytical chemistry, vol. 403, pp. 27-54, 2012.
[8] G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, “Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications,” Applied spectroscopy, vol. 65, no. 8, pp. 825-837, 2011.
[9] R. A. Halvorson, and P. J. Vikesland, "Surface-enhanced Raman spectroscopy (SERS) for environmental analyses," ACS Publications, 2010.
[10] S. Gestrelius, S. Lyngstadaas, and L. Hammarström, “Emdogain–periodontal regeneration based on biomimicry,” Clinical oral investigations, vol. 4, pp. 120-125, 2000.
[11] B. Bensaude-Vincent, “Bio-informed emerging technologies and their relation to the sustainability aims of biomimicry,” Environmental Values, vol. 28, no. 5, pp. 551-571, 2019.
[12] A. Iouguina, J. Dawson, B. Hallgrimsson, and G. Smart, “Biologically informed disciplines: A comparative analysis of bionics, biomimetics, biomimicry, and bio-inspiration among others,” International Journal of Design & Nature and Ecodynamics, vol. 9, no. 3, pp. 197-205, 2014.
[13] Y. T. Cheng, D. Rodak, C. Wong, and C. Hayden, “Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves,” Nanotechnology, vol. 17, no. 5, pp. 1359, 2006.
[14] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, “Adhesive force of a single gecko foot-hair,” Nature, vol. 405, no. 6787, pp. 681-685, 2000.
[15] P. Vukusic, J. Sambles, C. Lawrence, and R. Wootton, “Limited-view iridescence in the butterfly Ancyluris meliboeus,” Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 269, no. 1486, pp. 7-14, 2002.
[16] X. Li, Y. Yang, L. Liu, Y. Chen, M. Chu, H. Sun, W. Shan, and Y. Chen, “3D‐printed cactus‐inspired spine structures for highly efficient water collection,” Advanced Materials Interfaces, vol. 7, no. 3, pp. 1901752, 2020.
[17] S. Gangadoo, S. Chandra, A. Power, C. Hellio, G. S. Watson, J. A. Watson, D. W. Green, and J. Chapman, “Biomimetics for early stage biofouling prevention: templates from insect cuticles,” Journal of Materials Chemistry B, vol. 4, no. 34, pp. 5747-5754, 2016.
[18] P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensors and Actuators B: Chemical, vol. 246, pp. 477-486, 2017.
[19] J. Wang, S. Yi, Z. Yang, Y. Chen, L. Jiang, and C.-P. Wong, “Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting,” ACS applied materials & interfaces, vol. 12, no. 18, pp. 21080-21087, 2020.
[20] J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, and L. Jiang, “A multi-structural and multi-functional integrated fog collection system in cactus,” Nature communications, vol. 3, no. 1, pp. 1247, 2012.
[21] H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. M. Lau, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Composites Part B: Engineering, vol. 84, pp. 222-227, 2016.
[22] R. Pease, “Electron beam lithography,” Contemporary Physics, vol. 22, no. 3, pp. 265-290, 1981.
[23] X. Li, K. Terabe, H. Hatano, and K. Kitamura, “Domain patterning in LiNbO3 and LiTaO3 by focused electron beam,” Journal of crystal growth, vol. 292, no. 2, pp. 324-327, 2006.
[24] C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, and H. W. Lin, “Efficient and uniform planar‐type perovskite solar cells by simple sequential vacuum deposition,” Advanced Materials, vol. 26, no. 38, pp. 6647-6652, 2014.
[25] S. Abalde-Cela, B. Auguié, M. Fischlechner, W. T. Huck, R. A. Alvarez-Puebla, L. M. Liz-Marzán, and C. Abell, “Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation,” Soft Matter, vol. 7, no. 4, pp. 1321-1325, 2011.
[26] A. J. Chung, Y. S. Huh, and D. Erickson, “Large area flexible SERS active substrates using engineered nanostructures,” Nanoscale, vol. 3, no. 7, pp. 2903-2908, 2011.
[27] K. Kong, M. Mariatti, A. Rashid, and J. Busfield, “Enhanced conductivity behavior of polydimethylsiloxane (PDMS) hybrid composites containing exfoliated graphite nanoplatelets and carbon nanotubes,” Composites Part B: Engineering, vol. 58, pp. 457-462, 2014.
[28] Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chemical communications, vol. 47, no. 15, pp. 4466-4468, 2011.
[29] L. Wang, K. Yin, Z. Zhu, Q. Deng, and Q. Huang, “Femtosecond laser engraving micro/nanostructured poly (ether-ether-ketone) surface with superhydrophobic and photothermal ability,” Surfaces and Interfaces, vol. 31, pp. 102013, 2022.
[30] C. Stamatopoulos, A. Milionis, N. Ackerl, M. Donati, P. Leudet de la Vallée, P. Rudolf von Rohr, and D. Poulikakos, “Droplet self-propulsion on superhydrophobic microtracks,” ACS nano, vol. 14, no. 10, pp. 12895-12904, 2020.
[31] H. Zhang, J. Feng, J. Wang, and M. Zhang, “Preparation of ZnO nanorods through wet chemical method,” Materials Letters, vol. 61, no. 30, pp. 5202-5205, 2007.
[32] J. Fang, Y. Xuan, and Q. Li, “Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals,” Science China Technological Sciences, vol. 53, pp. 3088-3093, 2010.
[33] T. W. Ebbesen, “Carbon nanotubes,” Annual review of materials science, vol. 24, no. 1, pp. 235-264, 1994.
[34] M. S. Dresselhaus, G. Dresselhaus, P. Eklund, and A. Rao, Carbon nanotubes: Springer, 2000.
[35] Y. Li, X. J. Huang, S. H. Heo, C. C. Li, Y. K. Choi, W. P. Cai, and S. O. Cho, “Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays,” Langmuir, vol. 23, no. 4, pp. 2169-2174, 2007.
[36] A. De Ninno, A. Gerardino, B. Girarda, G. Grenci, and L. Businaro, “Top-Down approach to nanotechnology for cell-on-chip applications,” Biophysics and Bioengineering Letters, vol. 3, no. 2, 2010.
[37] R. Seisyan, “Nanolithography in microelectronics: A review,” Technical Physics, vol. 56, no. 8, 2011.
[38] C. G. Willson, R. R. Dammel, and A. Reiser, "Photoresist materials: a historical perspective." pp. 38-51.
[39] S. Liu, A. Al-Shadeedi, V. Kaphle, C.-M. Keum, and B. Lüssem, “Patterning organic transistors by dry-etching: the double layer lithography,” Organic Electronics, vol. 45, pp. 124-130, 2017.
[40] Y. Yue, and T. Kurokawa, “Designing responsive photonic crystal patterns by using laser engraving,” ACS applied materials & interfaces, vol. 11, no. 11, pp. 10841-10847, 2019.
[41] M. Wang, Y. Yang, and W. Gao, “Laser-engraved graphene for flexible and wearable electronics,” Trends in Chemistry, vol. 3, no. 11, pp. 969-981, 2021.
[42] J. Drechsel, and H. Fröb, “Deposition of functional organic thin layers by means of vacuum evaporation,” Vakuum in Forschung und Praxis, vol. 20, no. S1, pp. 15-20, 2008.
[43] D. Boone, “Physical vapour deposition processes,” Materials science and technology, vol. 2, no. 3, pp. 220-224, 1986.
[44] M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Gold nanoparticles: production, reshaping, and thermal charging,” Journal of Nanoparticle Research, vol. 1, pp. 243-251, 1999.
[45] S. Chander, and M. Dhaka, “Optical and structural constants of CdS thin films grown by electron beam vacuum evaporation for solar cells,” Thin Solid Films, vol. 638, pp. 179-188, 2017.
[46] S. Dubkov, A. Savitskiy, A. Y. Trifonov, G. Yeritsyan, Y. P. Shaman, E. Kitsyuk, A. Tarasov, O. Shtyka, R. Ciesielski, and D. Gromov, “SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation,” Optical Materials: X, vol. 7, pp. 100055, 2020.
[47] L. Kilian, A. Hauschild, R. Temirov, S. Soubatch, A. Schöll, A. Bendounan, F. Reinert, T.-L. Lee, F. Tautz, and M. J. P. r. l. Sokolowski, “Role of intermolecular interactions on the electronic and geometric structure of a large π-conjugated molecule adsorbed on a metal surface,” vol. 100, no. 13, pp. 136103, 2008.
[48] L.-L. Qu, Z.-Q. Geng, W. Wang, K.-C. Yang, W.-P. Wang, C.-Q. Han, G.-H. Yang, R. Vajtai, D.-W. Li, and P. M. J. J. o. h. m. Ajayan, “Recyclable three-dimensional Ag nanorod arrays decorated with Og-C3N4 for highly sensitive SERS sensing of organic pollutants,” vol. 379, pp. 120823, 2019.
[49] M. Yilmaz, E. Babur, M. Ozdemir, R. L. Gieseking, Y. Dede, U. Tamer, G. C. Schatz, A. Facchetti, H. Usta, and G. J. N. m. Demirel, “Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy,” vol. 16, no. 9, pp. 918-924, 2017.
[50] B. An, M. Li, J. Wang, and C. Li, “Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals,” Frontiers of Chemical Science and Engineering, vol. 10, pp. 360-382, 2016.
[51] Z. Geng, W. Liu, X. Wang, and F. Yang, “A route to apply Ag nanoparticle array integrated with microfluidic for surface enhanced Raman scattering,” Sensors and Actuators A: Physical, vol. 169, no. 1, pp. 37-42, 2011.
[52] C. Wang, X. Mu, J. Huo, B. Zhang, and K. Zhang, “Highly-efficient SERS detection for E. coli using a microfluidic chip with integrated NaYF 4: Yb, Er@ SiO 2@ Au under near-infrared laser excitation,” Microsystem Technologies, vol. 27, pp. 3285-3291, 2021.
[53] A. Islam, B. P. C. Raghupathy, M. Sivakumaran, and A. K. Keshri, “Ceramic membrane for water filtration: Addressing the various concerns at once,” Chemical Engineering Journal, vol. 446, pp. 137386, 2022.
[54] I. V. Maggay, Y. Chang, A. Venault, G. V. Dizon, and C.-J. Wu, “Functionalized porous filtration media for gravity-driven filtration: Reviewing a new emerging approach for oil and water emulsions separation,” Separation and Purification Technology, vol. 259, pp. 117983, 2021.
[55] D. A. Long, “Raman spectroscopy,” New York, vol. 1, 1977.
[56] L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, “Raman spectroscopy,” Analytical Chemistry, vol. 70, no. 12, pp. 341-362, 1998.
[57] J. S. Lupoi, E. Gjersing, and M. F. Davis, “Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy,” Frontiers in bioengineering and biotechnology, vol. 3, pp. 50, 2015.
[58] A. T. Young, “Rayleigh scattering,” Applied optics, vol. 20, no. 4, pp. 533-535, 1981.
[59] J.-X. Cheng, and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," 3, ACS Publications, 2004, pp. 827-840.
[60] C. L. Evans, and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem., vol. 1, pp. 883-909, 2008.
[61] K. A. Willets, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007.
[62] L. N. Lewis, “Chemical catalysis by colloids and clusters,” Chemical Reviews, vol. 93, no. 8, pp. 2693-2730, 1993/12/01, 1993.
[63] M. Fleischmann, P. Hendra, and A. J. C. p. l. McQuillan, “RAMAN SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELEC,” vol. 26, no. 2, 1974.
[64] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. J. P. r. l. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” vol. 78, no. 9, pp. 1667, 1997.
[65] H. Xu, E. J. Bjerneld, M. Käll, and L. J. P. r. l. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” vol. 83, no. 21, pp. 4357, 1999.
[66] C. S. Kumar, Raman spectroscopy for nanomaterials characterization: Springer Science & Business Media, 2012.
[67] X. Liu, J. Ma, P. Jiang, J. Shen, R. Wang, Y. Wang, and G. Tu, “Large-scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity,” ACS Applied Materials & Interfaces, vol. 12, no. 40, pp. 45332-45341, 2020.
[68] F. Yang, H. Zhang, H. Feng, J. Dong, C. Wang, and Q. Liu, “Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure,” Photonics Research, vol. 6, no. 2, pp. 02000077, 2018.
[69] A. Facchetti, M.-H. Yoon, C. L. Stern, G. R. Hutchison, M. A. Ratner, and T. J. Marks, “Building blocks for N-type molecular and polymeric electronics. perfluoroalkyl-versus alkyl-functionalized oligothiophenes (NTs; n= 2− 6). systematic synthesis, spectroscopy, electrochemistry, and solid-state organization,” Journal of the American Chemical Society, vol. 126, no. 41, pp. 13480-13501, 2004.
[70] C.-Y. Chiang, T.-Y. Liu, Y.-A. Su, C.-H. Wu, Y.-W. Cheng, H.-W. Cheng, and R.-J. J. P. Jeng, “Au nanoparticles immobilized on honeycomb-like polymeric films for surface-enhanced Raman scattering (SERS) detection,” vol. 9, no. 3, pp. 93, 2017.
[71] S. Y.-S. S. Adade, H. Lin, H. Jiang, S. A. Haruna, A. O. Barimah, M. Zareef, A. A. Agyekum, N. A. N. Johnson, M. M. Hassan, and H. Li, “Fraud detection in crude palm oil using SERS combined with chemometrics,” Food Chemistry, vol. 388, pp. 132973, 2022.
[72] X. Sha, S. Han, G. Fang, N. Li, D. Lin, and W. Hasi, “A novel suitable TLC-SERS assembly strategy for detection of Rhodamine B and Sudan I in chili oil,” Food Control, vol. 138, pp. 109040, 2022.
[73] S. Lin, X. Lin, X.-T. Lou, F. Yang, D.-Y. Lin, and Z.-W. Lu, “Rapid and sensitive SERS method for determination of Rhodamine B in chili powder with paper-based substrates,” Analytical methods, vol. 7, no. 12, pp. 5289-5294, 2015.
[74] Y. Ou, X. Wang, K. Lai, Y. Huang, B. A. Rasco, and Y. Fan, “Gold nanorods as surface-enhanced Raman spectroscopy substrates for rapid and sensitive analysis of allura red and sunset yellow in beverages,” Journal of agricultural and food chemistry, vol. 66, no. 11, pp. 2954-2961, 2018.
[75] A. Esme, and S. G. Sagdinc, “The vibrational studies and theoretical investigation of structure, electronic and non-linear optical properties of Sudan III [1-{[4-(phenylazo) phenyl] azo}-2-naphthalenol],” Journal of Molecular Structure, vol. 1048, pp. 185-195, 2013.
[76] G. R. Ferreira, H. C. Garcia, M. R. C. Couri, H. F. Dos Santos, and L. F. C. de Oliveira, “On the azo/hydrazo equilibrium in Sudan I azo dye derivatives,” The Journal of Physical Chemistry A, vol. 117, no. 3, pp. 642-649, 2013.
[77] Y. Ou, L. Pei, K. Lai, Y. Huang, B. A. Rasco, X. Wang, and Y. Fan, “Rapid analysis of multiple Sudan dyes in chili flakes using surface-enhanced Raman spectroscopy coupled with Au–Ag core-shell nanospheres,” Food Analytical Methods, vol. 10, pp. 565-574, 2017.
[78] B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst, vol. 137, no. 21, pp. 5082-5087, 2012.

無法下載圖示 全文公開日期 2028/07/10 (校內網路)
全文公開日期 2028/07/10 (校外網路)
全文公開日期 2028/07/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE