簡易檢索 / 詳目顯示

研究生: 謝志青
Chih-Ching Hsieh
論文名稱: 基於創新7R空間連桿組之 被動式腳踝復健裝置
A Passive Ankle Rehabilitation Device Based on a Novel 7R Spatial Linkage
指導教授: 郭進星
Chin-Hsing Kuo
口試委員: 武田 行生
Yukio Takeda
松浦 大輔
Daisuke Matsuura
林柏廷
Po-Ting Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 66
中文關鍵詞: 腳踝復健機構7R連桿復健設備RSSR空間四連桿
外文關鍵詞: Ankle rehabilitation mechanism, 7R linkage, rehabilitation device, RSSR spatial four-bar linkage
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般而言,在設計腳踝復健機構時,是將腳踝視為在一固定位置、方向旋轉的單一自由度旋轉接頭。因此,當將腳安裝於復健機構上時,腳踝便會被機構所牽引,以產生一個自由度的復健運動。然而,這種將腳踝假設為一個固定旋轉軸的接頭可能是不正確的。原因是因為腳踝是一個非常複雜的關結,且在作動的過程中,腳踝的旋轉軸心會連續性的變換位置及角度,且這種變化是無法被預期的。為了解決腳踝旋轉中心位置、方向改變的議題,一文獻曾提出了一種5R2P腳踝復健機構,其具有可被動適應腳踝旋轉軸心位置及角度改變之特性,意即復健機構在作動的過程中,允許腳踝旋轉中心任意變換其位置與角度。因此,腳踝在復健過程中不會受到額外的約束且能完成更靈活的復健運動。為了增加5R2P復健機構之力傳遞效率以及減小機構之體積,本研究將提出一種改良型7R腳踝復健機構。首先,我們會提出概念並證明7R連桿組可產生與5R2P連桿相似性質之動作。以此為基礎,我們將會分析機構在作動過程中的輸入-輸出關係與受力情形,並利用ADAMS機構模擬軟體分析並驗證。最後,我們製作原型機以驗證分析結果是否如實際所測量,同時探討此腳踝復健軟體是否可供患者使用。


    Conventionally, the patient’s ankle motion accommodated in a rehabilitation device is defined as a revolute joint with fixed rotation axis. Accordingly, the ankle will be guided by the rehabilitation device to perform a one-DOF rotation. However, such an equivalence may be inappropriate since the human ankle is a complex rotational joint where the position and orientation of its rotation axis are continuously changing during the ankle motion. To tackle with this issue, one research group proposed a 5R2P rehabilitation mechanism that has the ability of adapting to the changes in axis of ankle joint passively. The primary feature of this linkage is that the output rotational joint, which is represented as a rotation of user’s ankle, can have an arbitrary joint axis at any transitory configuration. This advantage allows the patients achieving a flexible flexion motion of the ankle, for which the rotation axis of the ankle is not necessary to follow a fixed direction and location. Inspired by their mechanism, we prosed a modified design of 7R linkage for ankle rehabilitation devices for inherently improving the transmission efficiency and structure compactness. First of all, the concept design from 5R2P linkage to 7R linkages is first demonstrated. Then, the kinematic and force analyses between input and ankle joint are analyzed while the rehabilitation exercise is performing. Based on these results, we will propose a prototype of 7R linkage for ankle rehabilitation device. Last, the experiment of the force measuring and wearing test are constructed.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III Chapter 1. Introduction 1 1.1. Motivations and Objectives 1 1.2. Literatures Review 2 1.2.1. Function of human ankle 2 1.2.2. Ankle Rehabilitation by Physical Therapist 4 1.2.3. Ankle Rehabilitation with Active Devices 5 1.2.4. Ankle Rehabilitation with Passive Devices 5 1.3 Thesis Organization 9 Chapter 2. A 5R2P Spatial Linkage for Ankle Rehabilitation: A Review 11 2.1. Introduction 11 2.2. Synthesis of the Mechanism 11 2.3. Motion and Force Ability 12 2.4. Experimental Validation 13 2.5. Conclusion 15 2.6. Summary 15 Chapter 3. A 7R Spatial Linkage for Ankle Rehabilitation 16 3.1. Motivation and Objective 16 3.2. Conceptual Design 16 3.3. The Equivalent RSSR Spatial Linkage 17 3.4. Summary 18 Chapter 4. Kinetostatic Analysis 19 4.1. Introduction 19 4.2. Kinematic Analysis 20 4.3. Kinetostatic Analysis 23 4.4. Computer Simulation 29 4.5. Force Analysis on the Proximity of ankle location 32 4.6. Discussion 35 4.7. User Evaluation based on force analysis 35 4.8. Summary 38 Chapter 5. Prototype and Experiment 39 5.1. CAD 39 5.2. Mechanical Design 42 5.2.1. Curve guides 42 5.2.2. Motor Selection 43 5.2.3. Force-Regulating Cables 44 5.3. Prototype 46 5.4. Summary 50 Chapter 6. Conclusions and Future Works 51 6.1. Conclusions 51 6.2. Feature works 52 References 53

    [1] Wilberth Alcoser, Luis vela, Andres Blanco, Jose Gonzalez, and Marco Oliver, 2012, “Major Trends in the Development of Ankle Rehabilitation Devices Principales Tendencias en el Desarrollo de Dispositivos de Rehabilitacion Para Tobillo,” DYNA, 79, p. 45-55
    [2] JACE Ankle A330 CPM. Available: http://www.jacesystems.com/products/ankle/jace_ankle.htm.
    [3] Jody A. Saglia, Nikos G. Tsagarakis, and Jian S. Dai, 2009, “A High Performance 2-dof Over-Actuated Parallel Mechanism for Ankle Rehabilitation,” IEEE International Conference on Robotics and Automation, Kobe, Japan, 12-17 May, pp. 2180-2186.
    [4] Girone, M., Burdea, G. and Bouzit, M., 1999, “The Rutgers Ankle" Orthopedic Rehabilitation Interface,” ASME Dynamic Systems and Control Division, 67, pp. 305-312.
    [5] Gengqian Liu, Jinlian Gao, and Hong Yue, 2006, “Design and Kinematics Simulation of Parallel Robots for Ankle Rehabilitation, ” International Conference on Mechatronics and Automation, Luoyang, Henan, China, 25-28 June, pp. 1109-1113.
    [6] Matsuura, D., Koga, T., Ishida, S., and Takeda, Y., 2013, “Kinetostatic Design of Ankle Rehabilitation mechanism Capable of Adapting to Changes in Joint Axis,” Journal of Robotics and Mechatronics, 25(6), pp. 1029-1037.
    [7] The Orthopedic Center of ST. LOUIS. Available: https://toc-stl.com/patient_info_foot.html
    [8] Baldisserri, B., and Parenti-Castelli, V., 2012, “A New 3D Mechanism for Modeling the Passive Motion of the Tibia–Fibula–Ankle Complex,” ASME Journal of Mechanism and Robotics, 4(2), pp. 021004.
    [9] Sung, E., Slocum, A. H., Ma, R., Bean, J. F., and Culpepper, M. L., 2011, “Design of an Ankle Rehabilitation Device Using Compliant Mechanisms,” ASME Journal of Mechanism and Robotics, 5(1), pp. 011001.
    [10] Tsoi, Y. H., and Xie, S. Q., 2010, “Design and Control of a Parallel Robot for Ankle Rehabilitation,” International Journal of Intelligent Systems Technologies, 8(1), pp. 100–113.
    [11] F. Gao, Y. Ren, E. J. Roth, R. Harvey, and L. Zhang, 2011, “Effects of repeated ankle stretching on calf muscle-tendon and ankle biomechanical properties in stroke survivors,” Clinical Biomechanics, 26(5), pp. 516-522.
    [12] Y. Sekiguchi, T. Muraki, Y. Kuramatsu, Y. Furusawa, and S. Izumi, 2012, “The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis,” Clinical Biomechanics, 27(5), pp. 495-499.
    [13] Saglia, J. A., Tsagarakis, N. G., Dai, J. S., and Caldwell, D. G., 2009, “A High Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation,” International Journal of Robotics Research, 28(9), pp. 1216–1227.
    [14] Beaumaris Physiotherapy. Available: https://beaumarisphysiotherapy.com.au/services/move-well-rehabilitation/#prettyPhoto.
    [15] ACTIVE. Available: https://www.active.com/running/articles/10-self-myofascial-release-exercises-for-runners
    [16] LIVESTRONG. COM. Available: https://www.livestrong.com/article/346672-how-to-use-a-foam-roller-for-ankles/
    [17] LIVESTRONG. COM. Available: https://www.livestrong.com/article/34996-build-wobble-board/
    [18] PHYSIO PRO. Available: http://www.physioproperth.com.au/resources/exercises/ankle-rehabilitation/
    [19] Teru Yonezawa, Kenta Nomura, and Takayuki Onodera, 2014, “Development and Performance Evaluation of parallel link type human ankle rehabilitation assistive device” IEEE International Conference on Robotics and Biomimetics,” Bali, Indonesia, 5-10 Dec, pp. 802-806.
    [20] Malosio M, Negri SP, Pedrocchi N, Vicentini F, Caimmi M, and Molinari Tosatti L., 2012, “A Spherical Parallel Three Degrees-of-Freedom Robot for Ankle-Foot Neuro-Rehabilitation,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 Aug.-1 Sept, pp. 3356-3359.
    [21] Congzhe Wang, Yuefa Fang, Sheng Guo and Yaqiong Chen, “Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation,” ASME Journal of Mechanisms and Robotics, 5, pp. 041003.
    [22] Sydney Inner West Allied Health Centre. Available: https://www.alliedhealth.net.au/minitalus.html
    [23] Design of a Novel Two Degree-of-Freedom Ankle-Foot Orthosis, “Design of a Novel Two Degree-of-Freedom Ankle-Foot Orthosis,” 2006, Journal of Mechanical Design, 129(11), pp. 1137-1143.
    [24] Mazzotti, C., Troncossi, M., Parenti-Castelli, V., 2016, “Dimensional Synthesis of the Optimal RSSR Mechanism for a Set of Variable Design Parameters,” Meccanica, 52(10), pp. 2439-2447.
    [25] SFT Co. Available: http://www.sflinear.com.tw/gonio-way-scrv-models/scrv.html
    [26] HARLARK Co. Available: http://www.hanmark.com.tw/
    [27] ABE TECHNO SYSTEM Co. Available: http://www.abetechno.com/

    無法下載圖示 全文公開日期 2023/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2023/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE