簡易檢索 / 詳目顯示

研究生: 李沂霖
Yi-Lin Li
論文名稱: 氧化鋅奈米柱在矽基材料之氨氣感測
Zinc Oxide NanoRods on Silicon-based Structures for Ammonia Gas Sensing
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 施文欽
Wen-Ching Shih
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 氧化鋅奈米柱矽基材料氨氣感測
外文關鍵詞: Zinc Oxide NanoRods, Silicon-based Structures, Ammonia Gas Sensing
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用低溫水溶液合成法,合成氧化鋅奈米柱(Znic Oxide NanoRod),以攝氏88度的水溫進行合成,並將其合成在三種不同型態的矽基板上,分別是二氧化矽(Silicon Dioxide)絕緣基板、P-型平面矽(P-Type_Silicon Plane)導電基板以及3D表面的矽金字塔導電基板(P-Type _Silicon Pyramid),進行氨氣感測(Ammonia Gas Sensor)的實驗,本實驗有幾項探討,分別為 (1) 不同時間的氧化鋅成長時間對於氨氣感測的影響, (2) 氧化鋅奈米柱成長於絕緣基板與導電基板對於氨氣感測的影響,以及 (3) 氧化鋅奈米柱成長於2D平面基板以及3D立體結構的導電基板對於氨氣感測影響並對其進行表面分析、成分含量分析、結晶度分析,並觀察其相互之間之關係。
在研究中,我們發現氧化鋅奈米柱成長於不同型態的矽基材時,他們有不同大小的外觀型態及結晶狀況,並且我們也發現,當氧化鋅奈米柱成長於二氧化矽基板時,其成長狀況,會依據成長時間增加而變得更加高大,並在結晶及成分多寡分析時,結晶狀況也會越來越好,成分也越來越多,因此在氨氣感測時,我們發現成長時間最長的參數,具備有最好的氨氣感測數值,接下來,當我們將氧化鋅奈米柱成長於P型平面矽基板時,發現其柱狀高度,明顯降低,因此我們判斷平面矽基板相對於二氧化矽基板而言,有較不易生長氧化鋅奈米柱的狀況,然而在結晶度及成分含量多寡的分析時,我們也發現其結晶狀況及成分含量,有明顯下降的情形,因此我們更加確信,平面矽基板確實有不易成長氧化鋅奈米柱的狀況,然而當我們進行氨氣感測時,其氣感響應,卻不是依據結晶及成分多寡進行響應回復,因此我們判斷其最有可能依據異質接面所帶來的響應影響。再來我將氧化鋅奈米柱成長於金字塔表面矽基板時,其成分及結晶分析狀況,又更為下降,因此在三種矽基材基板中,氧化鋅奈米柱又更不易成長於金字塔矽基板,但在氨氣感測時,其響應回復卻是三種基板中最高的,我們判斷其響應回復源自於,異質接面及放射狀生長的氧化鋅奈米柱。


For this research, Zinc Oxide NanoRod is major gas sensing material, we fabricate it on three type silicon substrate by solution process, because it is low price and more friendly for environment, then we divide the research into three part, the first part, we fabricate zinc oxide nanorod on silicon dioxide substrate, in fact, the fabrication model that is pure ZNR type, then we will discuss what gas sensing principle in this model is. so we use XRD and Raman technology to analyze material amount and crystalline property, then we can realize what is relationship between material quality and ability of sensor. In second part, we grow ZNR on p-type silicon substrate, we find out some interesting information in SEM analysis, when ZNR be grew on silicon substrate,the rod length of ZNR/Si is more shorter than it be grew on SiO2 substrate, maybe SiO2 is more suitable to fabricate ZNR, in order to confirm the special situation, we use XRD and Raman to analyze material quality of ZNR/Si, then ZNR/Si posses more lower crystalline, that just a phenomenon, then we want to know that causing reason, so ZnO seed layer surveying is importance, but we can’t get any helpful information in ZnO seed layer analysis, then we use ZNR/Si to sense NH3, its performance is high than ZNR/SiO2, we estimate that heterojunction contribute sensing effect. the third part, we fabricate ZNR on pyramid silicon wafer, then ZNR possess radiate shape on pyramid substrate, so it can sense more gas content by radiate shape, then it possess the highest performance in this research.

中文摘要 ………………………………………………………………………… 2 英文摘要 ………………………………………………………………………… 3 致謝 ………………………………………………………………………… 4 目錄 …………………………………………………………………................. 5 圖目錄 ……………………………………………………………………… 8 表目錄 ……………………………………………………………………… 10 第一章 緒論 1.1 前言 ………………………………………………………………… 11 1.2 研究動機 …………………………………………………………… 12 第二章 文獻回顧 2.1 氧化鋅特性簡介 2.1.1 氧化鋅結構與性質………………………………………… 13 2.1.2 氧化鋅製備方法…………………………………………… 14 2.2 矽基板蝕刻簡介 2.2.1 矽奈米線 …………………………………………………… 17 2.2.2 矽奈米洞 …………………………………………………… 18 2.2.3矽金字塔 ………………………………………………… 19 2.3 氣體感測優化設計 2.3.1 Metal doping and Hybrid 金屬摻雜與複合 ……………… 20 2.3.2 UV-Light Irradiation 紫外光照射 ……………………………… 21 2.3.3 P-N Junction Setting 異質接面 ……………………………… 21 2.3.4 3D-Structure Application 立體結構的應用 …………………… 25 第三章 實驗方法 3.1實驗藥品介紹 …………………………………………………… 26 3.2 實驗設計與流程 ………………………………………………… 27 3.3 低溫水溶液合成法製備氧化鋅奈米柱 …………………………… 30 3.4 金字塔蝕刻流程 …………………………………………………… 31 3.5 Pd電極濺鍍流程及參數 …………………………………………… 32 3.6 材料分析儀器及方法 3.6.1 Field-Emission - Scanning Electron Microscope(FE-SEM) ……… 35 3.6.2 X-Ray Diffraction Analysis(XRD) ………………………… 37 3.6.3 Raman Analysis ………………………………………………… 38 第四章 氧化鋅奈米柱成長於矽基材之氨氣感測 4.1 氧化鋅奈米柱成長於二氧化矽基板之特性分析 4.1.1 表面型態分析(SEM) …………………………………………… 39 4.1.2 X-Ray繞射分析(XRD) ………………………………………… 43 4.1.3 拉曼材料分析(Raman) ………………………………………… 45 4.1.4 氨氣感測特性分析 …………………………………………… 47 4.2 氧化鋅奈米柱成長於平面矽基板之特性分析 4.2.1 表面型態分析(SEM) …………………………………………………… 49 4.2.2 X-Ray繞射分析(XRD) ………………………………………… 52 4.2.3 拉曼材料分析(Raman) ………………………………………… 54 4.2.4 氨氣感測特性分析 …………………………………………… 56 4.3.1氧化鋅奈米柱成長於金字塔基板之特性分析 4.3.1 表面型態分析(SEM) ………………………………………………… 60 4.3.2 X-Ray繞射分析(XRD) ……………………………………… 63 4.3.3 拉曼材料分析(Raman) ……………………………………… 65 4.3.4 氨氣感測分析 ………………………………………………… 67 第五章 結論與未來展望 5.1 結論 ………………………………………………………………… 69 5.2 未來展望 ………………………………………………………………… 69 參考文獻 ………………………………………………………………… 70

[1] “ Development of a normalized multi-sensors system for low cost on-line
atmospheric pollution detection” Zaher Al Barakeha, Philippe Breuil,
Nathalie
Redonb, Christophe Pijolat,Nadine Locoge, Jean-Paul Viricellea
[2] “ Development of Semiconductor Chip-Type Gas Sensor” Ting-Jen Hsueh, Wen-
Tse Hsiao
[3] ” New Insights Towards Electron Transport Mechanism of Highly Efficient p-
Type CuO (111) Nanocuboids-Based H2S Gas Sensor” Jayaseelan
Dhakshinamoorthy and Biji Pullithadathil (2016)
[4] ” Effect of Tin Addition on Mesoporous Silica Thin Film and Its Application
for Surface Photovoltage NO2 Gas Sensor” Brian Yuliarto, HaoShen
Zhou,Takeo
Yamada, Itaru Honma, Yosuke Katsumura and Masaki Ichihara (2004)
[5] ” CO Gas Sensor Properties of Cu@CuO Core–Shell Nanoparticles Based on
Localized Surface Plasmon Resonance” T. Ghodselahi*, H. Zahrabi, M.
Heidari
Saani and M. A. Vesaghi (2011)
[6] ” Novel Solid Electrolyte CO2 Gas Sensors Based on c-Axis-Oriented Y-Doped
La9.66Si5.3B0.7O26.14” Nan Ma, Shingo Ide, Koichi Suematsu, Ken Watanabe
and Kengo Shimanoe (2020)
[7] ” High-Temperature Hydrogen Gas Sensor Based on Three-Dimensional
Hierarchical-Nanostructured Nickel–Cobalt Oxide” Maduraiveeran
Govindhan, Boopathi Sidhureddy and Aicheng Chen*(2020)
[8] ” Ultrasensitive NH3 Gas Sensor from Polyaniline Nanograin Enchased TiO2
Fibers” Jian Gong, Yinhua Li, Zeshan Hu, Zhengzhi Zhou and Yulin
Deng(2010)
[9] ” Monolayer Sc2CO2: A Promising Candidate as a SO2 Gas Sensor or
Capturer” Shuhong Ma, Dongyu Yuan, Zhaoyong Jiao, Tianxing Wang, and
Xianqi Dai (2017)
[10] ” Growth of Long ZnO Nanowires with High Density on the ZnO Surface for
Gas Sensors” Alex C. Campos, Suane C. Paes, Bruno S. Correa, Gabriel A.
Cabrera-Pasca, Messias S. Costa,† Cleidilane S. Costa, L. Otubo and A. W.
Carbonari.
[11] ” Performance Enhancement of ZnO Photocatalyst via Synergic Effect of
Surface Oxygen Defect and Graphene Hybridization” Xiaojuan Bai, Li Wang,
Ruilong Zong, Yanhui Lv, Yiqing Sun, and Yongfa Zhu
[12] ” Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with
Ag Nanowire Surface Plasmons” Liu Yang, Yue Wang, Haiyang Xu, Weizhen
Liu, Cen Zhang, Chunliang Wang, Zhongqiang Wang, Jiangang Ma, and Yichun
Liu
[13] ” Direct Growth of Black Phosphorus (p-Type) on a Flexible Substrate with
Dual Role of Two-Dimensional ZnO (n-Type) as Effective Passivation and
Enabling Highly Stable Broadband Photodetection” Parikshit Sahatiya, S.
Solomon Jones, Venkat Mattela, and Sushmee Badhulika
[14] ” Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and
Switches of ZnO Wires” Jun Zhou, Peng Fei, Yudong Gu, Wenjie Mai, Yifan
Gao, Rusen Yang, Gang Bao, and Zhong Lin Wang
[15] ” ZnO Nanotube Arrays as Biosensors for Glucose” Kun Yang, Guang-Wei She,
Hui Wang , Xue-Mei Ou, Xiao-Hong Zhang , Chun-Sing Lee , and Shuit-Tongee
[16] ” Hydrothermal growth of ZnO nanostructures” Sunandan Baruah and Joydeep
Dutta
[17] ” A review of ZnO nanoparticles as solar photocatalysts: Synthesis,
mechanisms and applications” Chin BoonOng, Law Yong Ng, Abdul Wahab
Mohammadac
[18] ” Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle
decorated microspheres” R. Sankar Ganesh, E. Durgadevi, M. Navaneethan,
V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y.
Hayakawa
[19].” CO Sensor Using ZnO Thin Film Derived by RF Magnetron Sputtering
Technique” Mohini Dwivedi, Jitendra Bhargava, Ashok Sharma, Vimal Vyas,
Golla Eranna less
[20] ” Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods”
Alimujiang Fulati *,Syed M. Usman Ali,Muhammad Riaz,Gul Amin,Omer Nur
andMagnus Willander
[21] “ Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by
hydrothermal method” Sonalika Agarwal, Prabhakar Raib, Eric Navarrete
Gatellc, Eduard Llobetc, Frank Güelle,Manoj Kumara, Kamlendra Awasthi
[22] ” Tuning the Growth Mechanism of ZnO Nanowires by Controlled Carrier
and Reaction Gas Modulation in Thermal CVD” Andreas Menzel*†, Kittitat
Subannajui, Rakshit Bakhda, Yabin Wang, Ralf Thomann, and Margit
Zacharias
[23] ” Morphology-Controlled Three-Dimensional Nanoarchitectures Produced by
Exploiting Vertical and In-Plane Crystallographic Orientations in
Hydrothermal ZnO Crystals” Won Woo Lee, Jaeseok Yi, Seong Been Kim,
Yoon-Ho Kim, Hong-Gyu Park, and Won Il Park
[24].” Effect of Glass Dissolution on the Solution Deposition of ZnO Films and
Its Exploitation for Deposition of Zn Silicates” Michael Kokotov, Shay
Bar-Nachum, Eran Edri and Gary Hodes
[25].” CO2 gas sensor based on silicon nanowires modified with metal
nanoparticles” S. Naama a,b,n , T. Hadjersi a,nn, A. Keffous a , G.
Nezzalb
[26] ” Formation of Silicon Nanoporous Structures Induced by Colloidal Gold
Nanoparticles in HF/H2O2 Solutions” Jianzhong Zhu, Hilary Bart-Smith,
Matthew R. Begley, Giovanni Zangari and Michael L. Reed
[27] ” Rapid, reversible, sensitive porous silicon gas sensor” Lenward Seals and
James L. Gole
[28] ” Standard Deviation Quantitative Characterization & Process Optimization
of the Pyramidal Texture of Monocrystalline Silicon Cells”
Zheng Fang,Zhilong Xu , Tao Jang , Fei Zhou and Shixiang Huang
[29] ” Gas sensing properties of Al-doped ZnO for UV-activated CO detection”
R Dhahri, M Hjiri, L El Mir, A Bonavita, D Iannazzo, M Latino,N Donato, SG
Leonardi and G Neri
[30] ” Au Decorated Zinc Oxide Nanowires for CO Sensing” Rakesh K. Joshi, Qiang
Hu, Farah Alvi, Nidhi Joshi, and Ashok Kumar
[31] ” High performance and low temperature coal mine gas sensor activated by
UV-irradiation” Salimeh kimiagar, Vahid Najaf, BartlomiejWitkowski, Rafal
Pietruszka & MarekGodlewski
[32] ” The observation of switchable dual conductive channels and related nitric
gas sensing properties in N-rGO/ZnO heterogeneous structure” Junwen
Qiu, Hu, Xinjie Min, Wenjing Quan, Renbin Tian, Peng Ji, Hua Zheng,
Weiwei Qin, Haixin Wang, Ting Pan, Suishi Cheng, Xiaoqiang Chen, Wei
Zhang and Xiaoru Wan
[33] ” Highly sensitive and selective trimethylamine sensor using one-dimensional
ZnO–Cr2O3 hetero-nanostructures” Hyung-Sik Woo, Chan Woong Na, Il-Doo Kim
and Jong-Heun Lee
[34] ” NiO/ZnO p–n heterostructures and gas sensing properties for reduced
operating temperature” Hailin Tian, Huiqing Fan,Guangzhi Dong, Longtao,
Ma and Jiangwei Ma
[35] ” Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydro-
dynamic -nanowire template for enhanced gas-sensing properties”
Zhouping Yin, Xiaomei Wang, Fazhe Sun, Xiaohu Tong, Chen Zhu, Qiying Lv,
Dong Ye, Shuai Wang, Wei Luo & YongAn Huang
[36] ” High-performance SERS substrate based on hybrid structure of graphene
oxide/AgNPs/Cu film@pyramid Si” Zhe Li, Shi Cai Xu, Chao Zhang, Xiao
Yun Liu, Sai Sai Gao, Li Tao Hu, Jia Guo, Yong Ma, Shou Zhen Jiang & Hai
Peng Si
[37] “ Synthesis and length dependent photoluminescence property of zinc oxide
nanorods” Ishaq Musa, Naser Qamhieh , Saleh Thaker Mahmoud
[38] “ A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants,
Process Parameters and Morphoslogies” Jacek Wojnarowicz , Tadeusz
Chudoba and Witold Lojkowski

[39] ” Reduction of dark current density in organic ultraviolet photodetector by
utilizing an electron blocking layer of TAPC doped with MoO3” Chih-Chien
Lee, Sajal Biring, Shiang-Jen Ren, Ya-Ze Li, Meng-Zhen Li, Nurul Ridho
Al Amin, Shun-Wei Liu
[40] ” Vacuum-Processed Small Molecule Organic Photodetectors with Low Dark
Current Density and Strong Response to Near-Infrared Wavelength” Chih-
Chien Lee, Richie Estrada, Ya-Ze Li, Sajal Biring, Nurul Ridho Al Amin,
Meng-Zhen Li, Shun-Wei Liu,* and Ken-Tsung Wong*
[41] ” Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity
Ammonia Gas Sensing” Suranan Anantachaisilp, Siwaporn Meejoo Smith,
Cuong Ton-That,Tanakorn Osotchan,Anthony R. Moon and Matthew R. Phillips
[42] ” Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag
Modification Process for Rapid NH3 Detection” Yuxiang Qin, Diao Liu,
Tianyi Zhang and Zhen Cui
[43] ” Micropatternable Double-Faced ZnO Nanoflowers for Flexible Gas Sensor”
Jong-Woo Kim,Yoann Porte,Kyung Yong Ko,Hyungjun Kim and Jae-Min Myoung
[44] ” Chemical Gated Field Effect Transistor by Hybrid Integration of One-
Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film
for Low Power Gas Sensor” Jin-Woo Han,Taiuk Rim,Chang-Ki Baek and M.
Meyyappan
[45] ” Tailoring the Optical Property by a Three-Dimensional Epitaxial Hetero-
structure: A Case of ZnO/SnO2” Qin Kuang, Zhi-Yuan Jiang, Zhao-Xiong Xie,
Shui-Chao Lin, Zhi-Wei Lin, Su-Yuan Xie, Rong-Bin Huang, and Lan-Sun Zheng
[46] ” High performance MoO3-x/Si heterojunction photodetectors with nanoporous
pyramid Si arrays for visible light communication application”
Y ujin Liu,Guobiao Cen, Gai Wang, Junwei Huang, Suhang Zhou, Jingbo Zheng,
Y ong Fu, Chuanxi Zhao and Wenjie Mai
[47] ” High efficiency multi-crystalline silicon solar cell with inverted pyramid
nanostructure” Ye Jiang , Honglie Shen, Tian Pu , Chaofan Zheng , Quntao
Tang, Kai Gao , Jing Wu , Chunbao Rui ,Yufang Li , Youwen Liu
[48] “ Inverted nanopyramid texturing for silicon solar cells using interference
lithograph” SenthuranSivasubramaniam,Maan M.Alkaisi
[49] “ Near-Ultraviolet-Sensitive Graphene/Porous Silicon Photodetectors” Jungkil
Kim, Soong Sin Joo, Kyeong Won Lee, Ju Hwan Kim, Dong Hee Shin, Sung
Kim,and Suk-Ho Choi
[50] “ Light pollution as a biodiversity threat” Franz Ho¨ lker1, Christian
Wolter,Elizabeth K. Perkin and Klement Tockner
[51] ” Spatial Prediction of Heavy Metal Pollution for Soils in Peri-Urban
Beijing, China Based on Fuzzy Set Theory” TAN Man-Zhi, XU Fang-Ming, CHEN
Jie, ZHANG Xue-Lei and CHEN Jing-Zhong
[52] ” Classification of water quality status based on minimum quality
parameters: application of machine learning techniques” Donya
Dezfooli·Seyed ‑Mohammad Hosseini‑Moghari· Kumars Ebrahimi · Shahab
Araghinejad
[53] “ Analysing and mapping spatial and temporal dynamics of urban traffic noise
pollution: a case study in Kahramanmaraş” Hakan Doygun & Derya Kuşat
Gurun
[54] “ The role of interfacial phenomena in the contamination and decontamination
of nuclear reactors” K. Varga

無法下載圖示 全文公開日期 2025/08/12 (校內網路)
全文公開日期 2025/08/12 (校外網路)
全文公開日期 2025/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE