簡易檢索 / 詳目顯示

研究生: 陳俊宏
Chun-hung Chen
論文名稱: 二性次微米高分子粒子與蛋白質之間的交互作用
Interactions between Amphoteric Submicron Polymer Particles and Proteins
指導教授: 陳崇賢
Chorng-shyan Chern
口試委員: 林析右
Shi-yow Lin
李振綱
Cheng-kang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 74
中文關鍵詞: 二性次微米高分子蛋白質
外文關鍵詞: Amphoteric Submicron, Proteins, Polymer Particles
相關次數: 點閱:230下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以甲基丙烯酸甲酯(MMA)為疏水性單體、甲基丙烯酸(MAA)為親水性單體,V-50為陽離子起始劑,先以批次無乳化聚合反應合成種子乳漿粒子,再以半批次無乳化聚合反應合成乳漿粒子。這些次微米粒子的表面同時具有胺基及羧基,因此具有pH敏感性,在低pH值的環境下由於胺基團離子化使得粒子表面帶正電;在高pH值的環境下由於羧基團離子化使得粒子表面帶負電。
藉由兩性乳漿粒子分別與BSA、Pepsin、Lysozyme進行恆溫吸附以觀察膠體粒子濁度、粒徑及表面電性之變化,發現隨著不同的pH值環境下,乳漿粒子與三種蛋白質之交互作用也隨之改變,當兩性乳漿粒子與蛋白質帶有相反的異性電荷時,在電性中和下形成一個自發的吸附過程會造成凝聚的現象,是處於較不安定的膠體系統;當兩性乳漿粒子與蛋白質帶有同性的電荷時,會產生靜電排斥力使得蛋白質較不易吸附在粒子的表面,因此顯示具有較安定的膠體系統。


Amphoteric latex particles were prepared by the surfactant-free emulsion polymerization, with methyl methacrylate (MMA) as the hydrophobic monomer, methacrylic acid (MAA) as the hydrophilic monomer, and V-50 as the cationic initiator. First, the seed latex particles were prepared by the batch surfactant-free emulsion polymerization. Second, the latex products were synthesized by the semibatch seeded surfactant-free emulsion polymerization. These submicron particle surfaces have amino groups and carboxyl groups at the same time. Therefore, they display pH-sensitiy. The particle surfaces have net positive charge, owing to the ionized amino groups at low pH. The particle surfaces have net negatively charge, owing to the ionized carboxyl groups at high pH.
Isothermal adsorption of BSA, pepsin or lysozyme on amphoteric latex particles were carried out. Adsorption of proteins onto the particles leads to change in the turbidity, particle size and zeta potential. When amphoteric latex particles and proteins have the opposite net charge, the self-promoting adsorption process may occur due to charge neutralization and this could lead to flocculation. In contrast, electrostatic repulsion forces between amphoteric latex particles and proteins with similar charges play an important role in the colloidal stability. This will then retard the adsorption of protein molecules onto the particle surfaces. Therefore, latex particles exhibit excellent colloidal stability.

目錄 中文摘要………………………………………………………………i 英文摘要………………………………………………………………ii 致謝……………………………………………………………………iii 目錄……………………………………………………………………iv 圖目錄…………………………………………………………………vii 表目錄…………………………………………………………………x 第一章 緒論………………………………………………………….1 1-1 研究背景及目的……………………………………………1 1-2 研究內容簡介………………………………………………1 第二章 文獻回顧…………………………………………………….3 2-1 無乳化聚合的簡介…………………………………………3 2-2 膠體的穩定性………………………………………………4 2-2-1 膠體安定的系統………………………………………4 2-2-2 DLVO 理論……………………………………………5 2-2-3 膠體表面帶電的原因………………………………….6 2-3 高分子聚合體與蛋白質間之作用………………………....7 2-3-1 高分子聚合體與蛋白質吸附之過程………………….7 2-3-2 高分子聚合體與蛋白質分子間的交互影響力……….7 2-2-3 高分子聚合體作為載體的設計……………………….8 2-3-4 環境溶液pH值對蛋白質吸附之影響………………..9 2-4 相關文獻……………………………………………………9 2-4-1 膠體粒子經吸附蛋白質之影響……………………….9 2-4-2 表面官能基團對蛋白質……………………………….10 2-4-3 二性膠體粒子之研究吸附的影響…………………….12 第三章 實驗藥品、設備及方法……………………………………..16 3-1 藥品………………………………………………………….16 3-2 實驗儀器及設備…………………………………………….17 3-3 實驗方法…………………………………………………….18 3-3-1 乳漿之製備……………………………………………..18 3-3-2 乳漿粒子的清洗步驟…………………………………..20 3-3-3 利用TEM測量乳漿粒子粒徑…………………………20 3-3-4 pH值對乳漿粒子表面電位(ξ)及粒徑(dp)之影響…20 3-3-5 pH値對乳漿粒子濁度之影響…………………………21 3-3-6 在不同pH值中蛋白質對乳漿粒子濁度之影響………21 3-3-7 在不同pH值中蛋白質對乳漿粒子表面電位及粒徑 之影響…………………………………..........................22 3-3-8 在高濃度電解質下pH值對乳漿粒子表面電位及粒 徑之影響……………………………............................22 3-3-9 在高濃度電解質下不同pH值蛋白質對乳漿粒子濁 度之影響………………………………………............22 3-3-10 在高濃度電解質強度下pH值對乳漿粒子表面電位 及粒徑之影響…………………...........................…….23 第四章 結果與討論…………………………………………………..28 4-1 乳漿粒子之合成製備……………………………………….28 4-2 pH值對乳漿粒子表面電位之影響………………………...28 4-3 pH值對乳漿粒子粒徑之影響…………………………….29 4-4 pH值對乳漿粒子濁度之影響…………………………….30 4-5 在不同pH值中蛋白質對乳漿粒子濁度之影響…………30 4-6 在不同pH值中蛋白質對乳漿粒子表面電位之影響……33 4-7 在不同pH值中蛋白質對乳漿粒子粒徑之影響…………35 4-8 在高濃度電解質下pH值對乳漿粒子表面電位之影響…36 4-9 在高濃度電解質下pH值對乳漿粒子粒徑之影響………37 4-10 在高濃度電解質下不同pH值蛋白質對乳漿粒子濁度 之影響……………………………………………………37 4-11 在高濃度電解質下不同pH值蛋白質對乳漿粒子表面 電位之影響………………………………………………39 4-12 在高濃度電解質下不同pH值蛋白質對乳漿粒子粒徑 之影響……………………………………………………41 第五章 結論…………………………………………………………69 5-1 結論………………………………………………………...69 5-2 建議………………………………………………………...70 第六章 參考文獻……………………………………………………71 圖目錄 圖2-1 膠體粒子彼此靠近時之能量交互作用曲線…………………..15 圖2-2 蛋白質溶解度隨pH值變化曲線………………………………15 圖3-1 批次無乳化聚合反應裝置圖…………………………………..26 圖3-2 半批次無乳化聚合反應裝置圖.……………………………….27 圖4-1 純化後乳漿樣品TEM照片 (a) P-1……………………………44 圖4-1 純化後乳漿樣品TEM照片 (b) P-2……………………………45 圖4-2 當NaCl = 2 mM時,在不同pH值下乳漿粒子ζ電位的變化…46 圖4-3 (a)當NaCl = 2 mM時,在不同pH值下P-1乳漿粒子粒徑 的變化(b)當NaCl = 2 mM時,在不同pH值下P-2乳漿粒 子粒徑的變化…………………………………………………..47 圖4-4 (a)當NaCl = 2 mM時,在不同pH值下P-1乳漿粒子在560 nm下之吸收值的變化(b)當NaCl = 2 mM時,在不同pH值 下P-2乳漿粒子在560 nm下之吸收值的變化……………….48 圖4-5 當NaCl = 2 mM時,在不同pH值中BSA對P-1乳漿粒 子在560 nm下之吸收值的變化……………………………….49 圖4-6 當NaCl = 2 mM時,在不同pH值中Pepsin對P-1乳漿粒 子在560 nm下之吸收值的變化……………………………….50 圖4-7 當NaCl = 2 mM時,在不同pH值中Lysozyme對P-2乳 漿粒子在560 nm下之吸收值的變化……………………….....51 圖4-8 當NaCl = 2 mM時,在不同pH值中BSA對P-1乳漿粒 子表面電位ζ的變化…………………………………………...52 圖4-9 當NaCl = 2 mM時,在不同pH值中Pepsin對P-1乳漿粒 子表面電位ζ的變化……………………………………….......53 圖4-10 當NaCl = 2 mM時,在不同pH值中Lysozyme對P-2乳 漿粒子表面電位ζ的變化………………………………........54 圖4-11 當NaCl = 2 mM時,在不同pH值中BSA對P-1乳漿 粒子粒徑的變化…………………………………................…55 圖4-12 當NaCl = 2 mM時,在不同pH值中Pepsin對P-1乳漿 粒子粒徑的變化…………………………………………........56 圖4-13 當NaCl = 2 mM時,在不同pH值中Lysozyme對P-2乳 漿粒子粒徑的變化……………………………………............57 圖4-14 (a) 2 mM NaCl、10mM NaCl、50 mM buffer下pH值對 P-1乳漿粒子表面電位ζ的變化(b) 2 mM NaCl、10mM NaCl、50 mM buffer下pH值對P-2乳漿粒子表面電位 ζ的變化……….........................................................................58 圖4-15 (a)在50 mM Buffer溶液下,pH值對P-1乳漿粒子粒徑 的變化(b)在50 mM Buffer溶液下,pH值對P-2乳漿 粒子粒徑的變化………………..........................……………..59 圖4-16 在50 mM Buffer溶液下,不同pH值中BSA對P-1乳 漿粒子在560 nm下之吸收值的變化…………………..........60 圖4-17 在50 mM Buffer溶液下,不同pH值中Pepsin對P-1 乳漿粒子在560 nm下之吸收值的變化……………............61 圖4-18 在50 mM Buffer溶液下,不同pH值中Lysozyme對P-2 乳漿粒子在560 nm下之吸收值的變化………………..........62 圖4-19 在50 mM Buffer溶液下,不同pH值中BSA對P-1乳漿 粒子表面電位ζ的變化……………………………………....63 圖4-20 在50 mM Buffer溶液下,不同pH值中Pepsin對P-1乳 漿粒子表面電位ζ的變化……………………........................64 圖4-21 在50 mM Buffer溶液下,不同pH值中Lysozyme對P-2 乳漿粒子表面電位ζ的變化…………………………...........65 圖4-22 在50 mM Buffer溶液下,不同pH值中BSA對P-1乳漿 粒子粒徑的變化………………………………………........66 圖4-23 在50 mM Buffer溶液下,不同pH值中Pepsin對P-1乳 漿粒子粒徑的變化……………………………………..........67 圖4-24 在50 mM Buffer溶液下,不同pH值中Lysozyme對P-2 乳漿粒子粒徑的變化……………………………………......68 表目錄 表2-1 Isoelectric Points for some Selected Proteins…………………..14 表3-1 乳漿粒子的實驗配方………………………………………….24 表3-2 不同pH所用之Buffer ………………………………………..25 表4-1 乳漿產品之實驗數據………………………………………….43

1.M. S. El-Aasser, ”Scientific Methods for the Study of Polymer Colloids and Their Applications”, F. Candau, R. H. Ottewill(Ed), 1988,pp1-34
2.T. Linsheng, Y. Jingwei, Z. Shufeng, Y. Jinzong, W. Yumin, “Emulsifier-Minor Emulsion Copolymerization of BA-MMA-St-MAA (or AA)-N-MA”, J. App. Polym. Sci.,2004,92,2923-2929
3.H. Tamai, M. Hasegawa, T. Suzawa, “Surface Characterization of Hydrophilic Functional”, J. App. Polym. Sci.,1989,38,403-412
4.M. W. Thompson, “Polymer Colloids”, R. Buscall, T. Corner, J. F. Stageman(Ed),1985,pp1-43
5.D. Myers, “Surfaces Interfaces and Colloids : Principles and Applications”, 1999,pp214-248
6.T. Satsuo, R. Ruch, “Stabilization of Colloidal Dispersion by Polymer Adsorption”, T. Satsuo, R. Ruch(Ed),New York,1980,pp65-119
7.H. Tamai, A. Fujii, T. Suzawa, “Colloidal Stability of Polymer Latices Coated with Bovine Serum Albumin”, J. Colloid and Interface sci., 1987,118, 176-181
8.B. V. Derjaguin and L. Landau, Acta Physicochimica U.R.S.S.,1941, 14,633
9.E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam,1952
10.C.W. Kim, C. K. Rha, “Applications of Submicron-Sized Polymeric Particles in Bioseparation Processes”, Enzyme Microb. Technol., 1987,9,57-59
11.B. Gebben, G. D. B. van Houwelingen, W. Zhang, Th. Van den Boomgaard, C. A. Smolders, “Protein Separation Using Affinity Binding”, Colloid and Surfaces B:Biointerfaces,1994,3,75-84
12.Y. Sumi, T. Shiroya, K. Fujimoto, T. Wada, H. Handa, H.Kawaguchi, “Application of Cationic Latex Particles for Protein Separation”, Colloid and Surfaces B:Biointerfaces,1994,2,419-427
13.J. E. Butler, “Solid Supports in Enzyme-Linked Immunosorbent Assay and Other Solid-Phase Immunoassays”, Methods,2000,22,4-23
14.S. Slomkowski, T. Basinska, B. Miksa, New Types of Microspheres and Microsphere-related Materials for Medical Diagnostics”, Polym. Adv. Technol.,2002, 13,906-918
15.D. Duracher, R. Veyret, A. Elaissari, C. Pichot,”Adsorption of Bovine Serum Albumin Protein onto Amino-Containing Thermosensitive Core-Shell”, Polym Int.,2004, 53, 618-626
16.J. Revilla, A. Elaissari, P. Carriere, C. Pichot, “Adsorption of Bovine Albumin onto Polystyrene Latex Particles Bearing Saccharidic Moieties”, J. Colloid and Interface sci.,1995,180,405-412
17.J. D. Andrade, “Surface and Interfacial Aspects of Biomedical Polymers--v.2 Protein Adsorption”,1985,pp1-80
18.T. Suzawa, T. Murakami, “Adsorption of Bovine Serum Albumin on Synthetic Polymer Latices”, J. Colloid and Interface sci., 1980, 266-268
19.A.I. Liapis, K.K. Unger, “Highly Selective Separations in Biotechnology”, G. Stereet (Ed),1994, 121-162
20.F. J. Dechow, “Separation and Purification Techniques in Biotechnology”, 1989,pp416-484
21.R. K. Scopes, “Protein Purification : Principles and Practice”,1987, pp41-71
22.T. Suzawa, H. Shirahama, T. Fujimoto, “Adsorption of Bovine Serum Albumin onto Homo- and Copolymer Latices”, J. Colloid and Interface sci., 1982,86,144-150
23.A. V. Elgersma, R. L. J. Zsom, W. Norde, J. Lyklma, “The Adsorption of Bovine Serum Albumin on Positively and Negatively Charged Polystyrene Latices”, J. Colloid and Interface sci., 1990, 138, 145-156
24.J. Y. Yoon, H. Y. Park, J. H. Kim, W. S. Kim, ”Adsorption of BSA on Highly Carboxylated Microspheres-Quantitative Effects of Surface Functional Groups and Interaction Forces”, J. Colloid and Interface sci.,1996,177,613-620
25.J. Y. Yoon, H. Y. Park, J. H. Kim, W. S. Kim, ”Interpretation of Protein Adsorption Phenomena onto Functional Microspheres” Colloid and Surfaces B:Biointerfaces.,1998,12,15-22
26.S. Li, J. Hu, B. Liu, ”Astudy on the Adsorption Behavior of Protein onto Functional Microspheres”, J. Chem Technol Biotechnol, 2005, 80,531-536
27.A. Homola, R. O. James, “Preparation and Characterization of Amphoteric Polystyrene Latices”, J. Colloid and Interface sci., 1977, 59,123- 133
28.H. Shirahama, H. Ohno, T. Suzawa, Prepartion, “Characterization, and Albumin Adsorption of Amphoteric Polymer Latices”, Colloid and Surfaces,1991,60,1- 17
29.S. J. Fang, H. Kawaguchi, “Colloidal Properties and Protein Adsorption of Amphoteric Microspheres”, Colloid and Surfaces A, 2002,211,79-84
30.C. S. Chern, C. K. Lee, C. J. Chang, “Electrostatic Interactions between Amphoteric Latex Particles and Proteins”, Colloid Polym Sci.,2004,283, 257-264
31.張家榮,碩士論文,國立台灣科技大學,2002
32.J. J. Valle-Delgado, J. A. Molina-Bolivar, F. Galisteo-Gonzalez, M. J. Galvez-Ruiz, “Study of Colloidal Stability of an Amphoteric Latex”, Colloid Polym Sci.,2003,281,708-715
33. D. J. A. Willians, K. P. Williams, “Electrophoresis and Zeta Potential of Kaolinite”, J. Colloid and Interface sci.,1978,65,79-87
34. T. Lopez-Leon, P. M. Gea-Jodar, D. Bastos-Gonzalez, J. L. Ortega-Vinuesa, “Hofmeister Effects in the Restabilization of IgG-Latex Particles : Testing Ruckenstein’s Theory”, Langmuir,2005,21,87-93

QR CODE