簡易檢索 / 詳目顯示

研究生: 何忠漢
Prasetya - Hutomo Winnyarto Sulaksono
論文名稱: Implementation of a Flexible Robotic Joint with a Tendon-driven Rotary Actuator
Implementation of a Flexible Robotic Joint with a Tendon-driven Rotary Actuator
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: Shun-Feng Su
Shun-Feng Su
Chyi-Yeu Lin
Chyi-Yeu Lin
Shih-Hsuan Chiu
Shih-Hsuan Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 96
中文關鍵詞: flexible robotic jointtendon-driven rotary actuatorforce-sensor-lesssystem-on-a-programmable-chipfield programming gate array
外文關鍵詞: flexible robotic joint, tendon-driven rotary actuator, force-sensor-less, system-on-a-programmable-chip, field programming gate array
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

In the last decade, robotics is one of important solutions in healthcare applications. Robotic manipulators with tendon-driven configurations usually use as solutions in biomedical fields. Therefore, this work presents the mechanical design and control schemes for a flexible robotic joint with tendon-driven rotary actuator techniques. The flexible tendon-driven rotary actuator consists of 2 brushless DC (BLDC) motors which are connected by using a pair of steel wires and a rotary joint. The force-sensor-less method is applied to measure the cable tension which is calculated from the relative displacement between the motor and rotary movements. With considering the controls of a pair of cables’ tensions, position and compliance control schemes can be achieved. Practically, the flexible robotic joint controller is implemented by using system-on-a-programmable-chip (SoPC) techniques to realize hardware/ software co-design approaches based on a field programming gate array (FPGA) architecture. Finally, a test platform containing a mechanical platform and a FPGA-based control system was made in this work, and the experiments for the control schemes of tension, position and position with compliance were discussed to verify the idea of tendon-driven rotary actuator design.


In the last decade, robotics is one of important solutions in healthcare applications. Robotic manipulators with tendon-driven configurations usually use as solutions in biomedical fields. Therefore, this work presents the mechanical design and control schemes for a flexible robotic joint with tendon-driven rotary actuator techniques. The flexible tendon-driven rotary actuator consists of 2 brushless DC (BLDC) motors which are connected by using a pair of steel wires and a rotary joint. The force-sensor-less method is applied to measure the cable tension which is calculated from the relative displacement between the motor and rotary movements. With considering the controls of a pair of cables’ tensions, position and compliance control schemes can be achieved. Practically, the flexible robotic joint controller is implemented by using system-on-a-programmable-chip (SoPC) techniques to realize hardware/ software co-design approaches based on a field programming gate array (FPGA) architecture. Finally, a test platform containing a mechanical platform and a FPGA-based control system was made in this work, and the experiments for the control schemes of tension, position and position with compliance were discussed to verify the idea of tendon-driven rotary actuator design.

ABSTRACT ............................................................................................................ i ACKNOWLEDGEMENT ..................................................................................... ii CONTENTS .......................................................................................................... iii LIST OF TABLES ................................................................................................. v LIST OF FIGURES .............................................................................................. vi CHAPTER 1. INTRODUCTION .......................................................................... 1 1.1. Background of research ................................................................. 1 1.2. Objectives of Research.................................................................... 2 1.3. Thesis Structure .............................................................................. 2 CHAPTER 2. LITERATURE REVIEWS ............................................................. 4 2.1. Healthcare robots ............................................................................ 4 2.1.1. Exoskeletons ...................................................................... 4 2.1.2. Surgery Robot .................................................................... 5 2.2. Flexible Robotic Joint ..................................................................... 6 2.3. Compliance and Position Control ................................................ 10 CHAPTER 3. FUNDAMENTAL TECHNOLOGY............................................. 13 3.1. Brushless DC Motor ..................................................................... 13 3.1.1. Stator ................................................................................ 13 3.1.2. Rotor ................................................................................. 14 3.1.3. Rotor Position Sensor ....................................................... 15 3.1.4. Torque/Speed Characteristics ........................................... 15 3.1.5. Mathematical Modeling ................................................... 16 3.1.6. Trapezoidal Back EMF .................................................... 18 3.1.7. Encoder Pulse Sequence .................................................. 21 3.2. Load Cell....................................................................................... 22 3.3. FPGA ............................................................................................ 23 3.3.1. Programmable Logic ........................................................ 24 iv 3.3.2. Programmable Interconnect ............................................. 24 3.3.3. Programmable I/O ............................................................ 25 3.4. PID Controller .............................................................................. 26 3.4.1. Proportional Term ............................................................ 28 3.4.2. Integral Term .................................................................... 28 3.4.3. Derivative Term ................................................................ 29 3.4.4. Manual Tuning ................................................................. 29 CHAPTER 4. DESIGN OF FLEXIBLE ROBOTIC JOINTS.............................. 31 4.1. Design Concept ............................................................................ 31 4.2. Mechanical Design ....................................................................... 32 4.3. Electrical Board Design ................................................................ 34 4.4. FPGA Design ............................................................................... 36 4.4.1. Software Design ............................................................... 37 4.4.2. Filter Module .................................................................... 40 4.4.3. ENC Module .................................................................... 42 4.4.4. PWM Module ................................................................... 46 CHAPTER 5. DESIGN AND SIMULATION OF CONTROL SYSTEM ......... 48 5.1. Single Tension Open Loop Model and Simulation ...................... 48 5.2. Single Tension Close Loop Model ............................................... 52 5.3. Dual Tension Open Loop Control Model and Simulation ........... 55 5.4. Position compliance close loop control model and simulation .... 59 CHAPTER 6. MEASUREMENT ........................................................................ 64 6.1. Degree Measurement .................................................................... 64 6.2. Spring Constant Measurement ..................................................... 65 6.3. Force Control Measurement ......................................................... 65 6.3.1. Compliance Control Force Measurement.......................... 66 6.3.2. Position Compliance Control ............................................ 68 6.4. Position Control Measurement ...................................................... 72 6.5. Learning Experiment ..................................................................... 76 CHAPTER 7. CONCLUSION AND FUTURE WORKS.................................... 78 7.1. Conclusion .................................................................................... 78 v 7.2. Future Works ................................................................................ 79 REFERENCES ..................................................................................................... 80

[1] K. Takemura and T. Maeno, ”Design and control of an ultrasonic motor
capable of generating multi-DOF motion,” IEEE/ASME Transactions on
Mechatronics, vol. 6, no. 4, pp. 499 – 506, 2001.
[2] S. Nishino, N. Tsujiuchi, T. Koizumi, H. Komatsubara, T. Kudawara, and
M. Shimizu, “Development of Robot Hand with Pneumatic Actuator and
Construct of Master-Slave System,” IEEE International Conference on
Medicine and Biology Society, pp. 3027 – 3030, 2007.
[3] H. Yamashita, D. Kim, N. Hata, and T. Dohi, “Multi-slider linkage
mechanism for endoscopic forceps manipulator,” IEEE Conference on
Intelligent Robots and Systems, pp. 2577 – 2582, 2003.
[4] S. Hyodo, Y. Soeda, and K. Ohnishi, “Verification of Flexible Actuator
From Position and Force Transfer Characteristic and Its Application to
Bilateral Teleoperation System,” IEEE Transactions on Industrial
Electronics. vol. 56, no. 1, pp. 36 – 42, 2009.
[5] D. S. Andreasen, S. K. Alien, and D. A. Backus, “Exoskeleton with EMG
based active assistance for rehabilitation,” IEEE International Conference
on Rehabilitation Robotics, pp. 333 – 336, 2005.
[6] M. H. Rahman, T. K-Ouimet, M. Saad, J. P. Kenne, and P. S.
Archambault, “Tele-operation of a robotic exoskeleton for rehabilitation
and passive arm movement assistance,” IEEE International Conference on
Robotics and Biomimetics, pp. 443 – 448, 2005
[7] X. Liu and K.H. Low, “Development and preliminary study of the NTU
lower extremity exoskeleton,” IEEE International Conference on
Cybernetics and Intelligent Systems, pp. 1243 – 1247, 2004.
[8] A. B. Zoss, H. Kazerooni, and A. Chu, “Biomechanical design of the
Berkeley lower extremity exoskeleton (BLEEX),”, IEEE/ASME
Transactions on Mechatronics, vol. 11, no. 2, pp. 128-138, 2006.
82
[9] W. van Dijk, H. van der Kooij, and E. Hekman, “A passive exoskeleton
with artificial tendons: Design and experimental evaluation,” IEEE
International Conference on Rehabilitation Robotics, pp. 1 – 6, 2011.
[10] M. Ghodoussi, S. E. Butner, and W. Yulun, “Robotic surgery - the
transatlantic case,” IEEE International Conference on Robotics and
Automation, pp. 1882 – 1888, 2002.
[11] G. S. Guthart and J. K. Salisbury, Jr., “The Intuitive TM telesurgery
system: overview and application,” IEEE International Conference on
Robotics and Automation, pp. 618 – 621, 2000.
[12] K. Ikuta, T. Hasegawa, and S. Daifu, “Hyper redundant miniature
manipulator “Hyper Finger” for remote minimally invasive surgery in
deep area,” IEEE International Conference on Robotics and Automation,
pp. 1098 – 1102, 2003.
[13] Tobias Bruckmann et al.,”Wire Robots Part I Kinematics, Analysis &
Design,” in Parallel Manipulators, New Developments, Vienna : I-Tech
Education and Publishing, 2008, pp.109-132.
[14] Y. Suzuki and K. Ohnishi, “Realization of wire tension control for tendondriven
rotary actuator with a PE line,” IEEE International Symposium on
Industrial Electronics, pp. 1931 – 1936, 2010.
[15] Y. Suzuki, K. Sugawara, and K. Ohnishi, “Achievement of precise force
control for a tendon-driven rotary actuator with thrust wires and a PE
line,” IEEE Annual Conference on Industrial Electronics Society, pp. 1430
– 1435, 2010.
[16] C. T. Tsai, “Development of a Bilateral Tendon-wires-actuated Joint
Module with Compliance Controls,” Master, Electrical Engineering,
NTUST, Taipei, Taiwan, 2012.
[17] M. T. Mason, “Compliance and Force Control for Computer Controlled
Manipulators,” IEEE Transactions on Systems, Man and Cybernetics, vol.
11, no. 6, pp. 418 – 432, 1981.
[18] L. Zollo, B. Siciliano, C. Laschi, G. Teti, P. Dario, and E. Guglielmelli,
“An impedance-compliance control for a cable-actuated robot,” IEEE/RSJ
83
International Conference on Intelligent Robots and Systems, pp. 2268 –
2273, 2002.
[19] K. Byoung-Ho, C.N. Young, O. Sang-Rok, S.I. Hong, and C. Young-Jo,
“Intelligent compliance control for robot manipulators using adaptive
stiffness characteristics,” IEEE International Conference on Robotics and
Automation, pp. 2134 – 2139, 1999.
[20] C. Tae-yong, L. Joon-Woo, P. Kyoung-Taik, and L. Ju-Jang, “Position and
compliance control of a manipulator with pneumatic muscles for enhanced
safety,” IEEE International Symposium on Industrial Electronics, pp.
3565 – 3570, 2010.
[21] “AN855 - Brushless DC (BLDC) Motor Fundamentals,” I. Microchip
Technology, Ed., ed, 2003.

無法下載圖示 全文公開日期 2018/02/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE