簡易檢索 / 詳目顯示

研究生: 王奕軒
Yi-Shuan Wang
論文名稱: 高功率半導體雷射金屬粉末燒結積層製造研究
Research of metal powder sintered by high-power semiconductor laser in additive manufacturing
指導教授: 鄭正元
Jeng, Jeng-Ywan
口試委員: 鄭正元
Jeng-Ywan, Jeng
謝志華
Chih hua, Hsieh
許啟彬
Chi-Pin Hsu
覺元彙
Yuan-Hui, Chueh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 95
中文關鍵詞: 不鏽鋼粉末金屬積層製造半導體雷射
外文關鍵詞: stainless steel powder, metal additive manufacturing, semiconductor laser
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用高功率半導體雷射進行金屬積層製造,將高分子材料均勻披覆於不鏽鋼粉末(17-4PH)外層,利用雷射熔化高分子材料後能使金屬粒子間透過高分子熔融產生黏滯現象進而成型,透過半導體雷射機台控制其成型厚度,如此逐層堆疊成型。
    本研究探討如何利用高功率半導體雷射模組將金屬粉末燒結成形。以波長808nm之半導體雷射模組使用在材料上,在相同波長雷射比較不同功率之成型狀況並將其進行脫脂燒結,在各個階段比較不同參數產生的結果,最後分析不同雷射參數所燒結得出結果之差異。
    此研究應用高功率半導體雷射進行金屬材料之積層製造,利用雷射能量將高分子材料熔融產生黏結,並成功使用半導體雷射列印出物件,最終發現在高分子含量10wt%時能有較佳之成型效果,而在雷射能量密度0.25 J/mm2與0.375 J/mm2下得到物件成型效果較佳,並發現能量越高之物件因穿透深度較佳有利於提升物件密度,其重量也隨能量越高而增加。


    In this research, a high-power semiconductor laser is used for metal additive manufacturing, and the polymer material is uniformly coated on the outer layer of stainless steel powder (17-4PH). After the polymer material is melted by the laser, the metal particles can be viscous through the polymer melting. The phenomenon is then formed, and the forming thickness is controlled by the semiconductor laser machine, and the forming is stacked layer by layer.
    This research explores how to use high-power semiconductor laser modules to sinter metal powders. A semiconductor laser module with a wavelength of 808nm is used on the material, compare the molding conditions of different powers of the laser at the same wavelength after that can de-binding and sintering. Compare the results of different parameters at each stage, analyzed the result between different sintered parameters.
    This research attempted to use high-power semiconductor lasers for multi-layer manufacturing of metal materials, the laser energy is used to melt the polymer materials to produce bonding. Finally, it is found that when the polymer content is 10wt% would have better molding effect, and the object molding effect is better under the energy density of 0.25 J/mm2 and 0.375 J/mm2, and it is found that the object of the higher energy due to the better penetration depth is beneficial to increase the object density. With higher power, the weight has increased.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 積層製造 4 2.2 雷射加工應用於積層製造 5 2.2.1 半導體雷射 7 2.2.2 選擇性雷射燒結 9 2.2.3 選擇性雷射燒熔 12 2.3 粉末燒結 13 2.3.1 固相燒結 13 2.3.2 液相燒結 14 第三章 材料製作與性質分析 19 3.1 材料選用 19 3.1.1 不鏽鋼粉末 19 3.1.2 高分子材料 20 3.2 材料混合 21 3.2.1 材料混合之設備 21 3.2.2 材料粉末製作 23 3.3 材料性質分析 24 3.3.1 實驗材料之形貌分析 25 3.3.2 實驗材料之熱相分析 28 第四章 金屬材料之積層製造 31 4.1 疊層列印實驗參數設置 35 4.1.1 預熱溫度對舖粉情況之影響 35 4.1.2 黏結劑比例對列印的影響 43 4.1.3 雷射能量密度對列印的影響 49 4.2 物件脫脂 56 4.2.1 脫脂方式與設置 57 4.2.2 脫脂結果及其重量損失率 58 4.3 物件燒結 62 4.3.1 不同能量密度下物件收縮率比較 63 4.3.2 燒結前後之密度變化 66 第五章 實驗結果與未來展望 69 5.1 燒結結果分析 69 5.1.1 物件結構分析 70 5.1.2 物件硬度分析 72 5.1.3 拉伸試驗分析 74 5.1.4 立體物件列印測試 76 5.2 結論 79 5.3 未來研究方向 80 參考文獻 82

    [1] I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies, Springer, 2014.
    [2] 倪簡白, 1960的第一道光, (2018).
    [3] A.E. Siegman, Lasers, University Science Books, 1986.
    [4] 夏紹剛, 三張圖搞懂醫美雷射原理, (2017).
    [5] 雷射知識網, 什麼是雷射?
    [6] M. Zavala-Arredondo, N. Boone, J. Willmott, D.T.D. Childs, P. Ivanov, K.M. Groom, K. Mumtaz, Laser diode area melting for high speed additive manufacturing of metallic components, Materials & Design, 117 (2017) 305-315.
    [7] 光鏈路基本原件(光源), (2013).
    [8] 邱琬雯, 積層製造產品化技術關鍵, (2017).
    [9] EOS, DMLS-Werstoffe für die additive fertigung von Metallbauteilen.
    [10] 創想智造, 德國EOS P110 塑料粉末燒結3D打印機, (2016).
    [11] SISMA, MYSINT100, 3D selective laser fusion printer for metal powder.
    [12] 許富銓、王祥賓、鄭元傑、陳冠佑、呂英誠, 與時間競賽的複合積層製造, 科學發展 NO.523, (2016) p23~p25.
    [13] R. Gibson, Additive Manufacturing Technologies, (2015) 131.
    [14] Y. Dong, H. Jiang, A. Chen, T. Yang, T. Zou, D. Xu, Porous Al2O3 ceramics with spontaneously formed pores and enhanced strength prepared by indirect selective laser sintering combined with reaction bonding, Ceramics International, (2020).
    [15] K.-Y. Chiu, K.-K. Chen, Y.-H. Wang, F.-H. Lin, J.-Y. Huang, Formability of Fe-doped bioglass scaffold via selective laser sintering, Ceramics International, (2020).
    [16] 曾柏裕, 選擇性雷射燒結(SLS)溫度及孔隙性之研究, 機械工程學系, 國立成功大學, 台南市, 2015, pp. 102.
    [17] 陳昱劭, 選擇性雷射燒結304L不鏽鋼加工參數及熱應力之研究, 機械工程學系, 國立成功大學, 台南市, 2016, pp. 123.
    [18] 雷射燒結法.
    [19] 中鎢在線新聞網, SLM 選擇性鐳射熔融技術可列印純鎢材料, (2018).
    [20] additiva, Laser Sintering vs Laser Melting, (2017).
    [21] R. Gibson, Additive manufacturing technologies, (2010).
    [22] M. Nofal, S. Al-Hallaj, Y. Pan, Experimental investigation of phase change materials fabricated using selective laser sintering additive manufacturing, Journal of Manufacturing Processes, 44 (2019) 91-101.
    [23] 李喬楚、王小彬、皮忱玄、鐘雨芯、陸迪、章起航、汪雨軒、虞周斌、蔡佳文、石悅, 燒結方式簡介, (2018).
    [24] S.M. Nazemosadat, E. Foroozmehr, M. Badrossamay, Preparation of alumina/polystyrene core-shell composite powder via phase inversion process for indirect selective laser sintering applications, Ceramics International, 44 (2018) 596-604.
    [25] R. Gibson, Additive Manufacturing Technologies, (2015) 117.
    [26] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals, 56 (2007) 730-759.
    [27] 老松機械有限公司, 實驗室專用震動篩.
    [28] PerkinElmer, DSC8000.
    [29] Sinterit, Lisa.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE