簡易檢索 / 詳目顯示

研究生: 陳錦坤
Chin-kun Chen
論文名稱: 橢圓形異質界面之彈性問題解析
On Bonded Layered Media with Elliptic Boundaries in Plane Elasticity
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 黃榮芳
Rong-Fung Huang
馬劍清
Chien-Ching Ma
吳光鐘
Kuang-Chong Wu
黃錦煌
Jin-Huang Huang
胡潛濱
Chyanbin Hwu
陳東陽
Tung-Yang Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 205
中文關鍵詞: 保角映射差排交替技巧橢圓映射力
外文關鍵詞: conformal mapping, dislocation, alternating technique, elliptic, image force
相關次數: 點閱:308下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要在推導奇異點嵌入三相橢圓形異質內任一點之彈性場通解。首先,利用保角映射法先將橢圓異質轉換成圓形界面的異質問題;其次藉由適當的定義一輔助應力函數可使整個求解過程更加簡潔;再來藉由複變函數理論並結合解析連續法與交替技巧,即可求得在複合材料系統下受任意集中力、差排或無窮遠處均勻應力作用下之全場應力函數之級數解,其中作用在差排之映射力可藉由 Peach-Koehler 公式求得。
對於橢圓異質簡化後單一橢圓洞(或剛體)受一集中力作用下,其解可得一個閉合正解且滿足橢圓邊界洞(剛體)上的Traction-Free 及位移條件。此外本文中也加入探討反平面橢圓異質受奇異點(螺旋差排)作用,並了解奇異點與幾何特性跟相異材料比之間的關係;且文中推導的奇異點解析解亦可做為後續探討相關複合材料裂縫問題的參考。而後進一步探討三相橢圓異質與差排所在位置的關係,可經由數值求解其材料中差排所受之映射力的影響,進一步可知道差排移動方向及運動的動力,並藉由判斷平衡點的位置及穩定性,即可預測差排可能堆積位置;經由上述方法瞭解差排的特性後,就可以以此特性設計幾何並分析材料。
最後為驗證本文中所有問題推導結果之正確性,本文將所導出的公式應用於對等的雙材料、單一材料或是將橢圓退化成圓的問題,並與現存文獻的正解或數值作比較對照,最後都能與其結果相吻合,驗證出本文的研究方法具有正確性及廣泛性。


This study presents plane elasticity problems of the three-phase elliptical media subjected to an arbitrary singularity point. Based on the technique of conformal mapping and the method of analytical continuation in conjunction with the alternating technique, both the displacements and stresses are derived explicitly in terms of the Muskhelishvili’s complex potentials. The external loadings considered in this study include an arbitrary concentration load, dislocation and a uniform load. The image forces acting on the dislocation are calculated through the Peach-Koehler formula.
The series solution can be simplified to an exact one to satisfy boundary condition of an elliptical hole (or rigid inclusion) for the single elliptical inhomogeneity problem. The interaction between a screw dislocation and elliptical inhomogeneity is also discussed for different materials and geometry in this study. Besides, the derived singularity solution can be served as Green’s function to investigate the crack problem of the corresponding problem. From the numerical results, the equilibrium position and subsequent stability of the dislocation are determined and the magnitude or direction of dislocation’s movement is discussed in detail.
In order to verify the effectiveness and accuracy of this proposed method, the solution of the present three-phase composite is reduced to the one for the corresponding biomaterial and single material problems, or degenerated into circle from elliptic ones. The comparison of our results with the known exact one shows that our approach is accurate and effective.

中文摘要 I 英文摘要 III 誌 謝 IV 目 錄 V 圖目錄 VIII 表目錄 XVI 符號索引 XVII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 等向性異質問題 2 1.2.2 異向性異質問題 5 1.2.3 多層材料問題 6 1.3 差排起源 9 1.4 本文作法 10 第二章 二維彈性力學基本公式與保角映射 15 2.1 等向性二維彈性力學基本公式 15 2.2 保角映射法 17 2.3 映射力Peach-Koehler Formula 20 2.4 解析連續法與交替技巧 21 2.4.1 解析函數 21 2.4.2 連續定理 22 2.4.3 交替技巧 23 第三章 塗層橢圓洞之平面彈性場通解 28 3.1 問題描述 28 3.1.1 奇異點位於均質材料上之均質解 29 3.2 無窮遠應力作用於塗層橢圓洞基材 29 3.3 奇異點位於橢圓基材 39 3.4 數值結果 52 3.5 討論 54 第四章 三相橢圓異質反平面彈性場通解 63 4.1 問題描述 63 4.1.1. 反平面彈性場之均質解 64 4.2 奇異點在反平面三相橢圓材料上之交替技巧 64 4.2.1 奇異點位於區域 Ω1 內 64 4.2.2 奇異點位於區域 Ω2 內 72 4.2.3 奇異點位於區域 Ω3 內 77 4.4 討論 81 第五章 三相橢圓異質之平面彈性場通解 91 5.1 問題描述 91 5.2 奇異點位於區域 Ω1 內 93 5.3 奇異點位於區域 Ω2 內 106 5.4 奇異點位於區域 Ω3 內 121 5.5 數值結果 124 5.6 討論 127 第六章 結論與建議 151 6.1 結論 151 6.2 未來研究方向與建議 152 附錄 A 155 附錄 B 160 附錄 C 161 參考文獻 174 作者簡介 187

[1] Anlas, G., and Santare, M. H., “Arbitrarily oriented crack Inside an elliptical inclusion,” Journal of Applied Mechanics, Vol. 60, pp. 589-594 (1993).
[2] Barnett, D. M., and Swanger, L. A., “The elastic energy of a straight dislocation in an infinite anisotropic elastic medium,” Phys. Stat. Sol. B, Vol. 48, pp. 419-428 (1971).
[3] Barnett, D. M., and Lothe, J., “Synthesis of the sextic and the integral formalism for dislocation, Green's function and surface waves in anisotropic elastic solids,” Phys. Norv., Vol. 7, pp. 13-19 (1973).
[4] Barnett, D. M., and Lothe, J., “Line force loadings on anisotropic half-spaces and wedges,” Phys. Norv., Vol. 8, pp. 13-22 (1975).
[5] Bufler, H., “Theory of elasticity of a multilayered medium,” Journal of Elasticity, Vol. 1, pp. 125-143 (1971).
[6] Burgers, J. M., Proc. Kon. Ned. Akad. Wetenschap., Vol. 42, pp. 293-378 (1939).
[7] Chao, C. K., and Kao, B., “A thin cracked layer bonded to an elastic half-space under an antiplane concentrated load,” International Journal of Fracture, Vol. 83, pp. 223-241 (1997).
[8] Chao, C. K., Chen, F. M., and Shen, M. H., “Green's functions for a point heat source in circularly cylindrical layered media,” Journal of Thermal Stresses, Vol. 29, pp. 809-847 (2006a).
[9] Chao, C. K., Chen, F. M., and Shen, M. H., “Circularly cylindrical layered media in plane elasticity,” International Journal of Solids and Structures, Vol. 43, pp. 4739-4756 (2006b).
[10] Chao, C. K., Chuang, C. T., and Chang, R. C., “Thermal stresses in a viscoelastic three-phase composite cylinder,” Theoretical and Applied Fracture Mechanics, Vol. 48, pp. 258–268 (2007).
[11] Chau, K. T., and Wei, X. X., “Stress Concentration Reduction at a Reinforced Hole Loaded by a Bonded Circular Inclusion,” ASME Journal of Applied Mechanics, Vol. 68, pp. 405-411 (2001).
[12] Chen, D. H., “A point force and an edge dislocation in an elliptical inclusion embedded in an infinite medium,” International Journal of Fracture, Vol. 71, pp. 311-322 (1995).
[13] Chen, F. M., and Chao, C. K., “Stress analysis of an infinite plate with a coated elliptic hole under a remote uniform heat flow,” Journal of thermal Stresses, Vol. 31, pp. 599-613 (2008).
[14] Chen, T. Y., “A confocally multicoated elliptical inclusion under antiplane shear some new results,” Journal of Elasticity, Vol. 74, pp. 87-97 (2004).
[15] Chen, W. T., “Computation of stresses and displacements in a layered elastic medium,” International Journal of Engineering Science, Vol. 9, pp. 775-800 (1971).
[16] Chiu, Y. T., and Wu, K. C., “Analysis for elastic strips under concentrated loads,” Journal of Applied Mechanics, Vol. 65, No. 3, pp. 626-634 (1998).
[17] Choi, H. J., and Thangjitham, S., “Thermal stresses in a multilayered anisotropic medium,” ASME Journal of Applied Mechanics, Vol. 58, No. 4, pp. 1021-1027 (1991a).
[18] Choi, H. J., and Thangjitham, S., “Stress analysis of multilayered anisotropic elastic media,” ASME Journal of Applied Mechanics, Vol. 58, No. 2, pp. 382-387 (1991b).
[19] Choi, S. T., and Earmme, Y. Y., “Elastic study on singularities interacting with interfaces using alternating technique Part I. Anisotropic trimaterial,” International Journal of Solids and Structures, Vol. 39, pp. 943-957 (2002a).
[20] Choi, S. T., and Earmme, Y. Y., “Elastic study on singularities interacting with interfaces using alternating technique Part II. Isotropic trimaterial,” International Journal of Solids and Structures, Vol. 39, pp. 1199-1211 (2002b).
[21] Chu, S. N. G., “Elastic interaction between a screw dislocation and surface crack,” J. Appl. Phys., Vol. 53, No. 12, pp. 8678-8685 (1982).
[22] Comninou, M., “A property of interface dislocations,” Philosophical Magazine, Vol. 36, No. 5, pp. 1281-1283 (1977).
[23] Craciun, E. M., “Anti-plane states in an anisotropic elastic body containing an elliptical hole,” Mathematics and Mechanics of Solids, Vol. 11, pp. 459-466 (2006).
[24] Doghri, I., Jansson, S., Leckie, F. A. et al., “Optimization of coating layers in the design of ceramic fiber reinforced metal matrix composites,” Journal of Composite Materials, Vol. 28, No. 2 (1994).
[25] Donnell, L. H., “In theodore von karman anniversary volume,” Calfornia Institute of Technology, pp. 293-309 (1941).
[26] Dundurs, J., “Concentrated force in an elastically embedded disk,” ASME Journal of Applied Mechanics, Vol. 30, pp. 568-570 (1963).
[27] Dundurs, J., and Mura, T., “Interaction between an edge dislocation and a circular inclusion,” J. Mech. Phys. Solids, Vol. 12, pp. 177-189 (1964).
[28] Dundurs, J., and Hetenyi, M., “Transmission of force between two semi-infinite solids,” ASME Journal of Applied Mechanics, Vol. 32, pp. 671-674 (1965).
[29] Dundurs, J., and Sendeckyj, G. P., “Behavior of an edge dislocation near a bimetallic interface,” J. Appl. Phys., Vol. 36, pp. 3353-3354 (1965a).
[30] Dundurs, J., and Sendeckyj, G. P., “Edge dislocation inside a circular inclusion,” J. Mech. Phys. Solids, Vol. 13, pp. 141-147 (1965b).
[31] Dundurs, J., and Gakgadiiaran, A. C., “Edge dislocation near an inclusion with a slipping interface,” J. Mech. Phys. Solids, Vol. 17, pp. 459-471 (1969).
[32] Dundurs, J., Fukui, K., and Kukui, T., “Concentrated force near a smooth circular inclusion,” ASME Journal of Applied Mechanics, Vol. 33, pp. 871-876 (1966).
[33] England, A. H., Complex Variable Methods in Elasticity, (1971).
[34] Eshelby, J. D., “The determination of the elastic field of an ellipsoidal inclusion,and related problems,” Proc. R. Soc. Lond. A, Vol. 241, pp. 376-396 (1957).
[35] Eshelby, J. D., Read, W. T., and Shockley, W., “Anisotropic elasticity with applications to dislocation theory,” Acta Metallurgica, Vol. 1, pp. 251-259 (1953).
[36] Fang, Q. H., Liu, Y. W., and Wen, P. H., “Screw dislocations in a three-phase composite cylinder model with interface stress,” Journal of Applied Mechanics, Vol. 75, pp. 1-8 (2008).
[37] Fang, Q. H., Liu, Y. W., Jin, B. et al., “Effect of interface stresses on the image force and stability of an edge dislocation inside a nanoscale cylindrical inclusion,” International Journal of Solids and Structures, Vol. 46, pp. 1413-1422 (2009).
[38] Frank, F. C., “Crystal dislocations-elementary comcepts and definitions,” Philosophical Magazine, Vol. 42, No. 33, pp. 809-819 (1951).
[39] Ghahremani, F., “Effect of grain boundary sliding on anelasticity of polycrystals,” International Journal of Solids and Structures, Vol. 16, No. 9, pp. 847-862 (1980).
[40] Gong, S. X., “Unified treatment of the elastic elliptical inclusion under antiplane shear,” Archive of Applied Mechanics, Vol. 65, No. 2, pp. 55-64 (1995).
[41] Gong, S. X., and Meguid, S. A., “A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear,” Journal of Applied Mechanics, Vol. 59, pp. 131-135 (1992).
[42] Gong, S. X., and Meguid, S. A., “On the elastic fields of an elliptical inhomogeneity under plane deformation,” Proceedings: Mathematical and Physical Sciences, Vol. 443, No. 1919, pp. 457-471 (1993).
[43] Gong, S. X., and Meguid, S. A., “A screw dislocation interacting with an elastic elliptical inhomogeneity,” Int. J. Engng Sci., Vol. 32, No. 8, pp. 1221-1228 (1994).
[44] Hardiman, N. J., “Elliptic elastic inclusion in an infinite elastic plate,” Quart. Jonrn. Mecta. and Applied Math., Vol. VII, No. 2, pp. 226-230 (1954).
[45] Hasebe, N., Member, A., and Han, J. J., “Green's function of thermoelastic mixed boundary value problem for an elliptic hole,” Journal of Engineering Mechanics, pp. 800-807 (2001).
[46] Head, A. K., “The interaction of dislocations and boundaries,” Philosophical Magazine Series 7, Vol. 44, No. 348, pp. 92-94 (1953a).
[47] Head, A. K., “Edge dislocations in inhomogeneous media,” Proc. Phys. Soc. B, Vol. 66, pp. 793-801 (1953b).
[48] Hirth, J., and Lothe, J., Theory of Dislocations 2nd, (1982).
[49] Honein, T., and Herrmann, G., “The involution correspondence in plane elastostatics for regions bounded by a circle,” Journal of Applied Mechanics, Vol. 55, pp. 566-573 (1988).
[50] Honein, T., and Herrmann, G., “On bonded inclusions with circular or straight boundaries in plane elastostatics,” Journal of Applied Mechanics, Vol. 57, pp. 850-856 (1990).
[51] Hsieh, M. H., and Ma, C. C., “Analytical investigations for heat conduction problems in anisotropic thin-layer media with embedded heat sources,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 4117-4132 (2002).
[52] Hwu, C., and Ting, T. C. T., “Two-dimensional problems of the anisotropic elastic solid with an elliptic inclusion,” Q. J. Mech. Appl. Math., Vol. 42, pp. 553-572 (1989).
[53] Hwu, C., and Yen, W. J., “Green's functions of two-dimensional anisotropic plates containing an elliptic hole,” Int. J .Solid and Structure, Vol. 27, No. 13, pp. 1705-1719 (1991).
[54] Hwu, C., and Yen, W. J., “Plane problems for anisotropic bodies with an elliptic hole subjected to arbitrary loadings,” The Chinese Journal of Mechanics, Vol. 8, No. 2, pp. 123-129 (1992).
[55] Hwu, C., and Yen, W. J., “On the anisotropic elastic inclusions in plane elastostatics,” ASME Journal of Applied Mechanics, Vol. 60, pp. 626-632 (1993).
[56] Hwu, C. B., and Yen, W. J., “Green's functions of two-dimensional anisotropic plates containing an elliptic hole,” Int. J. Solids Structures, Vol. 27, No. 13, pp. 1705-1719 (1991).
[57] Ioakimidis, N. I., “Application of the conformal mapping and the complex path-independent integrals to the location of elliptical holes and inclusions in plane elasticity problems,” Computer Methods in Applied Mechanics and Engineering, Vol. 84, pp. 1-14 (1990).
[58] Iyengar, S. R., and Alwar, R. S., “Stress in a layered half-plane,” ASCE Journal of the Engineering Mechanics Division, Vol. 90, pp. 79-96 (1964).
[59] Jagannadham, K., and Marcinkowski, M. J., “Surface dislocation model of a dislocation in a two-phase medium,” Journal of Materials Science, Vol. 15, pp. 309-326 (1980).
[60] Jaswon, M. A., and Bhargava, R. D., “Two-dimensional elastic inclusion problems,” Proc. Camb. Phil. Soc, Vol. 57, pp. 669-680 (1961).
[61] Kattis, M. A., and Meguid, S. A., “Two-phase potentials for the treatment of an elastic inclusion in plane thermoelasticity,” Journal of Applied Mechanics, Vol. 62, pp. 7-12 (1995).
[62] Lee, K. W., Choi, S. T., and Earmme, Y. Y., “A circular inhomogeneity problem revised,” ASME Journal of Applied Mechanics, Vol. 66, pp. 276-278 (1999).
[63] Lee, M. S., and Dundurs, J., “Edge dislocation in a surface layer,” Int. J. Engng. Sci., Vol. 11, pp. 87-94 (1973).
[64] Lin, C. C., and Hwu, C., “Uniform heat flow disturbed by an elliptical rigid inclusion embedded in an anisotropic elastic matrix,” Journal of Thermal Stresses, Vol. 16, No. 2, pp. 119-133 (1993).
[65] Lin, K. M., and Lee, S., “Dislocations near a bimetallic interface,” Phys. Stat. Sol. A, Vol. 120, pp. 497-506 (1990).
[66] Lin, R. L., and Ma, C. C., “Antiplane deformations for anisotropic multilayered media by using the coordinate transform method,” ASME Journal of Applied Mechanics, Vol. 67, No. 3, pp. 597-605 (2000).
[67] Liu, Y. W., Jiang, C. P., and Cheung, Y. K., “A screw dislocation interacting with an interphase layer between a circular inhomogeneity and the matrix,” International Journal of Engineering Science, Vol. 41, pp. 1883-1898 (2003).
[68] Luo, H. A., and Chen, Y., “An edge dislocation in a three-phase composite cylinder model,” Journal of Applied Mechanics, Vol. 58, pp. 75-86 (1991).
[69] Luo, J., and Xiao, Z. M., “Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity,” International Journal of Engineering Science, Vol. 47, pp. 883-893 (2009).
[70] Ma, C. C., and Hour, B. L., “Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation,” Int. J. Solids and Structures, Vol. 25, No. 11, pp. 1295-1309 (1989).
[71] Ma, C. C., and Wu, H. W., “Analysis of inplane composite wedges under traction-displacement or displacement-displacement boundary conditions,” Acta Mechanica, Vol. 85, pp. 149-167 (1990).
[72] Ma, C. C., and Lin, R. L., “Image singularities of green's functions for an isotropic elastic half-plane subjected to forces and dislocations,” Mathematics and Mechanics of Solids, Vol. 6, pp. 506-524 (2001).
[73] Ma, C. C., and Lin, R. L., “Image singularities of Green's functions for isotropic elastic bimaterials subjected to concentrated forces and dislocations,” International Journal of Solids and Structures, Vol. 39, pp. 5253-5277 (2002a).
[74] Ma, C. C., and Lin, R. L., “Full-field analysis of a planar anisotropic layered half–plane for concentrated forces and edge dislocations,” Proc. R. Soc. Lond. A, Vol. 458, pp. 2369-2392 (2002b).
[75] Ma, C. C., and Chang, S. W., “Analytical exact solutions of heat conduction problems for anisotropic multi-layered media,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 1643-1655 (2004).
[76] Ma, C. C., and Lu, H. T., “Theoretical analysis of screw dislocations and image forces in anisotropic multilayered media,” Physical Review B, Vol. 73, pp. 144102-1~144102-12 (2006).
[77] Muskhelishvili, N. I., Some basic problems of the mathematical theory of elasticity, Noordhoff, Groningen(1953).
[78] Nakahara, S., Wu, J. B. C., and Li, J. C. M., “Dislocations in a welded interface between two isotropic media,” Mater. Sci. Eng., Vol. 10, pp. 291-296 (1972).
[79] Ohr, S. M., and Chang, S. J., “Elastic interaction of a wedge crack with a screw dislocation,” J. Appl. Phys., Vol. 57, No. 6, pp. 1839-1843 (1985).
[80] Orowan, E., “Zur Kristallplastizität. II - Die dynamische Auffassung der Kristallplastizität,” Zeitschrift für Physik A Hadrons and Nuclei, Vol. 89, pp. 614-633 (1934a).
[81] Orowan, E., “Zur Kristallplastizität. III - Über den Mechanismus des Gleitvorganges,” Zeitschrift für Physik A Hadrons and Nuclei, Vol. 89, pp. 634-659 (1934b).
[82] Orowan, E., “Zur Kristallplastizität. I - Tieftemperaturplastizität und Beckersche Formel ” Zeitschrift für Physik A Hadrons and Nuclei, Vol. 89, pp. 605-613 (1934c).
[83] Peach, M., and Koehler, J. S., “The forces exerted on dislocations and the stress fields produced by them,” Physical Review, Vol. 80, No. 3, pp. 436-439 (1950).
[84] Polanyi, M., “Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte,” Zeitschrift für Physik A Hadrons and Nuclei Vol. 89, pp. 660-664 (1934).
[85] Porter, G. A., Chuang, C. T., Chao, C. K. et al., “Thermal stresses in a viscoelastic trimaterial with a combination of a point heat source and a point heat sink,” J. Eng. Math., Vol. 61, pp. 99-109 (2008).
[86] Qaissaunee, T., and Santare, H., “Edge dislocation interacting with an elliptical inclusion surrounded by an interfacial zone,” Q. J. Mech. Appl. Math, Vol. 48, No. 3, pp. 465-482 (1995).
[87] Rajan, T. P. D., Pillai, R. M., and Pai, B. C., “Reinforcement coatings and interfaces in aluminium metal matrix composites,” Journal of Materials Science, Vol. 33, pp. 3491-3503 (1998).
[88] Ru, C. Q., “Three-phase elliptical inclusions with internal uniform hydrostatic stresses,” Journal of the Mechanics and Physics of Solids, Vol. 47, pp. 259-273 (1999).
[89] Ru, C. Q., and Schiavone, P., “On the elliptic inclusion in anti-plane shear,” Mathematics and Mechanics of Solids, Vol. 1, pp. 327-333 (1996).
[90] Ru, C. Q., Schiavone, P., and Mioduchowski, A., “Uniformity of stresses within a three-phase elliptic inclusion in anti-plane shear,” Journal of Elasticity, Vol. 52, pp. 121-128 (1999).
[91] Ru, C. Q., Schiavone, P., Sudak, L. J. et al., “Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics,” International Journal of Non-Linear Mechanics, Vol. 40, pp. 281-287 (2005).
[92] Sendeckyj, G. P., “Elastic inclusion problems in plane elastostatics,” Int. J .Solid and Structure, Vol. 6, pp. 1535-1543 (1970).
[93] Shen, H., Schiavone, P., Ru, C. Q. et al., “Interfacial thermal stress analysis of an elliptic inclusion with a compliant interphase layer in plane elasticity,” International Journal of Solids and Structures, Vol. 38, pp. 7587-7606 (2001).
[94] Shen, M. H., Chen, S. N., and Chen, F. M., “Antiplane study on confocally elliptical inhomogeneity problem using an alternating technique,” Arch Appl Mech, Vol. 75, pp. 302-314 (2006).
[95] Sherman, D. I., C. R.(Dokl.) Akad. Sci. USSR Vol. 27, pp. 907-910 (1940).
[96] Shiue, S. T., and Lee, S., “The elastic interaction between screw dislocations and cracks emanating from an elliptic hole,” J. Appl. Phys., Vol. 64, No. 1, pp. 129-139 (1988).
[97] Small, J. C., and Booker, J. R., “Finite layer analysis of layered elastic materials using a flexibility approach,” International Journal for Numerical Methods in Engineering Vol. 20, No. 6, pp. 1025-1077 (1984).
[98] Smith, E., “Planar distributions of dislocations,” Proc. R. Soc. Lond. A, Vol. 305, pp. 387-404 (1968a).
[99] Smith, E., “The interaction between dislocations and inhomogeneities-I,” Int. J. Engng Sci., Vol. 6, pp. 129-143 (1968b).
[100] Srolovitz, D. J., Petkovic-Luton, R. A., and Luton, M. J., “Edge dislocation-circular inclusion interactions at elevated temperatures,” Acta Metallurgica, Vol. 31, No. 12, pp. 2151-2159 (1983).
[101] Stagni, L., “On the elastic field perturbation by inhomogeneities in plane elasticity,” Journal of Applied Mathematics and Physics (ZAMP), Vol. 33, pp. 315-325 (1982).
[102] Stagni, L., “Edge dislocation near an elliptic inhomogeneity with either an adhering or a slipping interface a comparative study,” Philosophical Magazine A, Vol. 68, No. 1, pp. 49-57 (1993).
[103] Stagni, L., “A unified treatment of the elliptic inhomogeneity with a slipping interface under line-singularity loading,” Mechanics Research Communications, Vol. 23, No. 1, pp. 47-53 (1996).
[104] Stagni, L., “The effect of the interface on the interaction of an interior edge dislocation with an elliptical inhomogeneity,” Z. angew. Math. Phys., Vol. 50, pp. 327-337 (1999).
[105] Stagni, L., “Elastic analysis of a multilayered cylindrical fiber with eigenstrains,” International Journal of Engineering Science, Vol. 39 (2001).
[106] Stagni, L., and Lizzio, R., “Edge dislocation trapping by a cylindrical inclusion near a traction-free surface,” J. Appl. Phys., Vol. 52, No. 2, pp. 1104-1107 (1981).
[107] Stagni, L., and Lizzio, R., “Shape effects in the interaction between an edge dislocation and an elliptical inhomogeneity,” Appl. Phys. A, Vol. 30, pp. 217-221 (1983).
[108] Stagni, L., and Lizzio, R., “Shape effects on edge dislocation climb over an elliptical inhomogeneity,” Acta Mechanica, Vol. 54, pp. 87-93 (1984).
[109] Stagni, L., and Lizzio, R., “The lamellar inclusion problem in plane elasticity,” Journal of Applied Mathematics and Physics, Vol. 37, pp. 479-490 (1986).
[110] Stagni, L., and Lizzio, R., “Edge dislocation inside a lamellar inhomogeneity,” J. Appl. Phys., Vol. 64, No. 3, pp. 1594-1596 (1988).
[111] Stagni, L., and Lizzio, R., “Edge dislocation in a lamellar inhomogeneity with a slipping interface,” Journal of Materials Science, Vol. 25, pp. 1618-1622 (1990).
[112] Stagni, L., and Lizzio, R., “Interaction between an edge dislocation and a lamellar inhomogeneity with a slipping interface,” Journal of Applied Mechanics, Vol. 59, pp. 215-217 (1992).
[113] Stroh, A. N., “Dislocations and cracks in anisotropic elasticity,” Philosophical Magazine, Vol. 3, No. 30, pp. 625-646 (1958).
[114] Stroh, A. N., “Steady state problems in anisotropic elasticity,” Journal of Mathematical Physics, Vol. 41, No. 2, pp. 77-103 (1962).
[115] Suo, Z., “Singularities interacting with interfaces and cracks,” Int. J. Solids Structures, Vol. 25, No. 10, pp. 1133-1142 (1989).
[116] Taylor, G. I., “The strength of rock salt,” Proc. R. Soc. Lond. A, Vol. 145, pp. 405-415 (1934a).
[117] Taylor, G. I., “The mechanism of plastic deformation of crystals. Part II. Comparison with observations,” Proc. R. Soc. Lond. A Vol. 145, pp. 388-404 (1934b).
[118] Taylor, G. I., “The mechanism of plastic deformation of crystals. Part I. Theoretical,” Proc. R. Soc. Lond. A, Vol. 145, pp. 362-387 (1934c).
[119] Ting, T. C. T., “Image singularities of green's functions for anisotropic elastic half-spaces and bimaterials,” Q. J. Mech. appl. Math., Vol. 45, No. 1, pp. 119-139 (1992).
[120] Tokovyy, Y., and Ma, C. C., “Analytical solutions to the 2D elasticity and thermoelasticity problems for inhomogeneous planes and half-planes,” Arch. Appl. Mech., Vol. 79, pp. 441-456 (2009).
[121] Tsuchida, E., Ohno, M., and Kouris, D. A., “Effects of an inhomogeneous elliptic insert on the elastic field of an edge dislocation,” Appl. Phys. A, Vol. 53, pp. 285-291 (1991).
[122] Vlasov, V. Z., and Leontev, N. N., “Beam, plates and shells on elastic foundations,” National Aeronautics and Space Administration, pp. TTF-357, TT65-50315 (1966).
[123] Wang, S. D., Hu, C. T., and Lee, S., “Screw dislocations near a cross crack,” Phys. Stat. Sol. (A), Vol. 132, pp. 281-294 (1992).
[124] Weertman, J., and Weertman, J. R., Elementary Dislocation Theory, New York: MacMillan Co.(1964).
[125] Worden, R. E., and Keer, L. M., “Green's functions for a point load and dislocation in an annular region,” Journal of Applied Mechanics, Vol. 58, pp. 954-959 (1991).
[126] Wu, K. C., “Interaction of a dislocation with an elliptic hole or rigid inclusion in an anisotropic material,” J. Appl. Phys., Vol. 72, No. 6, pp. 2156-2163 (1992).
[127] Wu, K. C., “Generalization of the Stroh formalism to 3-dimensional anisotropic elasticitypdf,” Journal of Elasticity, Vol. 51, pp. 213-225 (1998a).
[128] Wu, K. C., “The elastic fields of a line force or dislocation in an anisotropic wedge,” Int. J. Solids Structures, Vol. 35, No. 26-27, pp. 3483-3495 (1998b).
[129] Wu, K. C., and Chang, F. T., “Near-tip fields in a notched body with dislocations and body forces,” ASME Journal of Applied Mechanics, Vol. 60, pp. 936-941 (1993).
[130] Wu, K. C., and Chiu, Y. T., “The elastic fields of a dislocation in ananisotropic strip,” Int. J. Solids and Structures, Vol. 32, No. 3/4, pp. 543-552 (1995).
[131] Wu, K. C., and Chen, C. T., “Stress analysis of anisotropic elastic V-notched bodies,” Int. J. Solids and Structures, Vol. 33, No. 17, pp. 2403-2416 (1996).
[132] Wu, K. C., and Chiu, Y. T., “Antiplane shear analysis of a semi-infinite multi-layered monoclinic strip,” Acta Mechanica, Vol. 117, pp. 205-214 (1996).
[133] Xiao, Z. M., and Chen, B. J., “On the interaction between an edge dislocation and a coated inclusion,” International Journal of Solids and Structures, Vol. 38, pp. 2533-2548 (2001).
[134] Xiao, Z. M., and Chen, B. J., “A screw dislocation interacting with inclusions in fiber-reinforced composites,” Acta Mechanica, Vol. 155, pp. 203-214 (2002).
[135] Yang, H. C., and Chou, Y. T., “Antiplane strain programs of an elliptic inclusion,” ASME Journal of Applied Mechanics, Vol. 44, pp. 437-441 (1977).
[136] Yen, W. J., and Hwu, C., “Interactions between dislocations and anisotropic elastic elliptical inclusions,” Journal of Applied Mechanics, Vol. 61, pp. 548-554 (1994).
[137] Yen, W. J., Hwu, C., and Liang, Y. K., “Dislocation inside, outside, or on the interface of an anisotropic elliptical inclusion,” Journal of Applied Mechanics, Vol. 62, pp. 306-311 (1995).
[138] Yu, H. Y., and Sanday, S. C., “Elastic fields in joined half-spaces due to nuclei of strain,” Proc. R. Soc. Lond. A, Vol. 434, pp. 503-519 (1991a).
[139] Yu, H. Y., and Sanday, S. C., “Elastic field in joined semi-infinite solids with an inclusion,” Proc. R. Soc. Lond. A, Vol. 434, pp. 521-530 (1991b).
[140] Yu, H. Y., and Sanday, S. C., “Circular dislocation loops in bimaterials,” J. Phys.: Condens. Matter, Vol. 3, pp. 3081-3090 (1991c).
[141] Yu, H. Y., and Sanday, S. C., “Disclinations in bimaterials,” Phys. Stat. Sol. A, Vol. 126, pp. 355-365 (1991d).
[142] 王行達,「刃差排和裂縫之彈性交用作用」,博士論文,國立清華大學,新竹 (1991)。
[143] 陳筆聰,「差排在破裂力學之應用」,博士論文,國立清華大學,新竹 (1997)。
[144] 呂欣泰,「差排於異向性材料層域之全場解析與映射力研究」,碩士論文,國立台灣大學,台北 (2001)。
[145] 陳富謀,「含直線或圓形介面異質之熱彈性問題解析」,博士論文,國立台灣科技大學,台北 (2005)。

QR CODE