簡易檢索 / 詳目顯示

研究生: 江育玫
Yu-Mei Jiang
論文名稱: 合成聚甲基丙烯酸甲酯修飾氧化石墨烯及其性質研究
Synthesis of Poly(methyl methacrylate) Modified Graphene Oxide and Research for Their Properties
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 曾堯宣
Yao-Hsuan Tseng
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 151
中文關鍵詞: 改質氧化石墨烯甲基丙烯酸甲酯
外文關鍵詞: modified graphene oxide, Poly(methyl methacrylate)
相關次數: 點閱:196下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文透過甲基丙烯酸縮水甘油酯(GMA)上的環氧基團與氧化石墨烯(GO)上的羧酸基團產生反應而合成GO-GMA,並將聚甲基丙烯酸甲酯(PMMA)的長鏈接到改質後的氧化石墨烯(GO-GMA)上,再以調整溶劑、熱起始劑(BPO)、MMA單體及反應溫度的方式來製備三種不同分子量及四種不同濃度的PMMA+GO-GMA聚合物樣品,並且透過凝膠滲透層析儀(GPC)來鑑定聚合物樣品之分子量,接著將GO-GMA與PMMA+GO-GMA添加到甲基丙烯酸甲酯(MMA)單體及各種溶劑中製備成懸浮液樣品,再將PMMA+GO-GMA製備成聚合物樣品及高分子薄膜,並透過沉降實驗、紫外光-可見光吸收儀(UV-Vis)、傅立葉轉換紅外線光譜儀(FTIR)、示差掃描熱分析儀(DSC)、熱重分析儀(TGA)及螢光光譜儀(FL)來分析各個分子量、各個濃度的懸浮液、聚合物及薄膜樣品的沉澱速度、滯留時間、穿透率、吸收波長、熱穩定性、玻璃轉移溫度(Tg)及放光波長等性質。


In this research, we synthesized the GO-GMA by reacting between the epoxide group of glycidyl methacrylate and carboxylic acid groups of graphene oxide. And long-chain of poly(methyl methacrylate) (PMMA) is grafted on the surface of modified graphene oxide (GO-GMA). We prepared three different molecular weights and four different concentrations of PMMA+GO-GMA polymer samples by adjusting solvent, thermal initiator (BPO), methyl methacrylate (MMA), and reaction temperature. We used the Gel Permeation Chromatography (GPC) to confirm the molecular weights of PMMA+GO-GMA polymer samples. And then we prepared the suspension samples by adding the GO-GMA and PMMA+GO-GMA into methyl methacrylate and prepared polymer and polymer film samples by PMMA+GO-GMA. Finally, we analyzed the properties of samples of suspension, polymer and polymer film, such as rate of precipitation, time of retention, transmittance, absorption wavelength, thermal stability, glass transition temperature (Tg), and fluorescence wavelength by precipitation experiment, UV-Vis Spectrophotometer, Fourier Transform Infrared Spectrometer (FTIR), Differential Scanning Calorimeter (DSC), Thermal Analyzer (TGA), and Fluorescence Spectrometer (FL).

目錄 圖目錄 表目錄 摘要 英文摘要 第一章 緒論 1.1 前言 1.2 氧化石墨烯 1.3 文獻回顧 1.3.1 氧化石墨烯在溶劑及薄膜中之分散性 1.3.2 改質氧化石墨烯在溶劑及薄膜中之分散性 1.3.3 改質氧化石墨烯的應用 1.3.4 氧化石墨烯的改質方法 1.3.5 聚甲基丙烯酸甲酯氧化石墨烯材料之製備方法 1.4 研究動機及目的 第二章 實驗部分 2.1 實驗儀器 2.2 儀器量測方式 2.2.1 紫外光-可見光吸收儀量測方法 2.2.2 螢光光譜儀量測方法 2.2.3 傅立葉紅外線光譜儀量測方法 2.2.4 示差掃描熱分析儀量測方法 2.2.5 熱重分析儀量測方法 2.2.6 凝膠滲透層析儀量測方法 2.3 實驗藥品及溶劑 2.3.1 實驗所使用之藥品 2.3.2 實驗室所使用之溶劑 2.4 各化合物結構分子式 2.5 實驗步驟 2.5.1 製備GO-GMA的合成方法: 2.5.2 製備低分子量PMMA+GO-GMA聚合物 2.5.3 製備高分子量PMMA+GO-GMA高分子聚合物 2.5.4 無溶劑條件下製備中分子量PMMA+GO-GMA高分子聚合物 2.5.5 製備低分子量PMMA+GO-GMA高分子薄膜 2.5.6 製備高分子量PMMA+GO-GMA高分子薄膜 2.5.7 製備35萬分子量PMMA+GO-GMA高分子薄膜 2.5.8 製備高分子量PMMA+GO高分子薄膜 第三章 結果與討論 3.1樣品合成與探討 3.2沉降現象之觀察 3.2.1 觀察不同反應時間GO-GMA懸浮液的沉降情形 3.2.2 比較GO與GO-GMA懸浮液的沉降情形 3.3凝膠滲透層析儀分析 3.4 紫外光-可見光吸收儀分析 3.4.1 GO與GO-GMA於MMA單體中的穿透率變化量 3.4.2 低與高分子量聚合物之MMA懸浮液穿透率變化量圖譜 3.4.3 PMMA+GO-GMA於各溶劑中之特性比較 3.4.4 各分子量PMMA+GO-GMA薄膜之UV光譜 3.4.5 高分子量PMMA+GO-GMA薄膜之UV光譜 3.5傅立葉轉換紅外線光譜儀分析 3.5.1 低分子量PMMA+GO-GMA聚合物之FTIR光譜 3.5.2 中分子量PMMA+GO-GMA聚合物之FTIR光譜 3.5.3 高分子量PMMA+GO-GMA聚合物之FTIR光譜 3.6示差掃描熱分析儀分析 3.6.1 低分子量PMMA+GO-GMA聚合物之DSC圖譜 3.6.2 中分子量PMMA+GO-GMA聚合物之DSC圖譜 3.6.3 高分子量PMMA+GO-GMA聚合物之DSC圖譜 3.7熱重分析儀分析 3.7.1 低分子量PMMA+GO-GMA聚合物之TGA圖譜 3.7.2 中分子量PMMA+GOGMA聚合物之TGA圖譜 3.7.3 高分子量PMMA+GO-GMA聚合物之TGA圖譜 3.8螢光光譜儀分析 第四章 結論 4.1結論 4.2未來展望 第五章 參考文獻 附錄

[1]蘇清源,石墨烯氧化物之特性與應用前景。2011, 33, 163-167
[2]J. I. Paredes, S. Villar-Rodil, A. Martı´nez-Alonso, and J. M. D. Tasco´n. Graphene Oxide Dispersions in Organic Solvents. 2008, 24, 10560-10564
[3]Umashankar Male, Bo Kyoung Shin and Do Sung Huh. Graphene Oxide Incorporated Poly(ε-caprolactone) Honeycomb-Patterned Porous Polymer Films by the Breath Figure Method. 2017, 25, 297-302
[4]Sungjin Park, Jinho An, Inhwa Jung, Richard D. Piner, Sung Jin An, Xuesong Li, Aruna Velamakanni, and Rodney S. Ruoff. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. 2009, 9, 1593-1597
[5]Xing Wu, Robert W. Field, Jun Jie Wu, and Kaisong Zhang. Polyvinylpyrrolidone modified graphene oxide as a modifier for thin film composite forward osmosis membranes. 2017, 15, 251-260
[6]Jizhen Ma, Jintao Zhang, Zhigang Xiong, Yu Yong and X. S. Zhao. Preparation, characterization and antibacterial properties of silver-modified graphene oxide, 2011, 21, 3350
[7]Xiaoming Sun, Zhuang Liu, Kevin Welsher, Joshua Tucker Robinson, Andrew Goodwin, Sasa Zaric, and Hongjie Dai. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery, 2008, 1, 203-212
[8]Ziqie Rao, Hongyu Ge, Liangling Liu, Chen Zhu, Lian Min, Meng Liu, Lihong Fan, and Dan Li. Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system, 2018, 107, 1184-1192
[9]Sungjin Park, Kyoung-Seok Lee, Gulay Bozoklu, Weiwei Cai, SonBinh T. Nguyen, and Rodney S. Ruoff. Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking, 2008, 2, 572–578
[10]Yue Chen, Duxin Li, Wenyan Yang, and Chunguang Xiao. Enhancement of mechanical, thermal and tribological properties of AAPS-modified graphene oxide/ polyamide 6 nanocomposites, 2018, 138, 55-65
[11]Xiaohui Lenga, Dan Luoa, Zongxiang Xuc and Fei Wang. Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity, 2018, 257, 372–381
[12]Wenling Wu, Dongjuan Niu, Jianfeng Zhu, Liuqing Yang, Yanming Shao, Yuan Fang, and Yun Cui. Fluorescent modified graphene oxide/polyaniline nanowhiskers composites as smart electrode material for supercapacitors, 2017, 000, 1–12
[13]Shiva Nikkhah, Hasan Tahermansouri and Fereshteh Chekin. Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 4,40-methylenedianiline, 2018, 211, 323–327
[14]Milad Nonahala, Hadi Rastina, Mohammad Reza Saebb, Morteza Ganjaee Saric, Mojtaba Hamedian Moghadamd, Payam Zarrintaje, and Bahram Ramezanzadeh. Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study. 2018, 114, 233–243
[15]Richard Justin and Biqiong Chen. Strong and conductive chitosan–reduced graphene oxide nanocomposites for transdermal drug delivery. 2014, 2, 3759–3770
[16]Xiaorui Zhanga, Biyao Gengb, Hongyan Chena, Yufei Chenb, Yongtao Wanga, Li Zhanga, Hongzhi Liub, Huige Yanga, and Jinzhou Chena. Extraordinary toughness enhancement of poly(lactic acid) by incorporating very low loadings of noncovalent functionalized graphene-oxide via masterbatch-based melt blending. 2018, 334, 2014-2020
[17]Chengkun Lv, Fei Zheng, Xiao-yu Yang, Peng-Qing Bi, Mengsi Niu, Yuzhu Wang, Trevor A. Smith, Kenneth P. Ghiggino, and Xiao-Tao Hao. Optimizing the Crystallinity and Phase Separation of PTB7:PC71BM Films by Modified Graphene Oxide. 2018, 122, 2572–2581
[18]LeiCao, Zhenhuan Li, Kunmei Su, and BowenCheng. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium SelfPropagating High Temperature Synthesis Process. 2016, 6, 35184
[19]Sunanda Roy, Xiuzhi Tang, Tanya Das, Liying Zhang, Yongmei Li, Sun Ting, Xiao Hu, and C.Y. Yue. Enhanced Molecular Level Dispersion and Interface Bonding at Low loading of Modified Graphene Oxide to Fabricate Super Nylon 12 Composites. 2015, 7, 3142−3151
[20]Xuequan Zhang, Yiyu Feng, Saide Tang, and Wei Feng. Preparation of a graphene oxide–phthalocyanine hybrid through strong π–π interactions. 2010, 48, 211 – 216
[21]Rahim shah, Ayesha Kausar and Bakhtiar Muhammad. Characterization and Properties of Poly(methyl methacrylate)/Graphene, Poly(methyl methacrylate)/ Graphene Oxide and Poly(methyl methacrylate)/p-Phenylenediamine-Graphene Oxide Nanocomposites. 2015, 54, 1334-1342
[22]Gil Gonc¸alves, Paula A. A. P. Marques, Ana Barros-Timmons, Igor Bdkin, Manoj K. Singh, Nazanin Emami and Jos’e Gr’acio. Graphene oxide modified with PMMA via ATRP as a reinforcement filler. 2010, 20, 9927–9934
[23]Sun Hwa Lee, Daniel R. Dreyer, Jinho An, Aruna Velamakanni, Richard D. Piner, Sungjin Park, Yanwu Zhu, Sang Ouk Kim, Christopher W. Bielawski, and Rodney S. Ruoff. Polymer Brushes via Controlled, Surface-Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. 2010, 31, 281–288
[24]Viet Hung Pham, Thanh Truong Dang, Seung Hyun Hur, Eui Jung Kim, and Jin Suk Chung. Highly Conductive Poly(methyl methacrylate) (PMMA)-Reduced Graphene Oxide Composite Prepared by Self-Assembly of PMMA Latex and Graphene Oxide through Electrostatic Interaction. 2012, 4, 2630−2636
[25]Jean-Michel Thomassin, Milana Trifkovic, Walid Alkarmo, Christophe Detrembleur, Christine Jérôme, and Christopher Macosko. Poly(methyl methacrylate)/Graphene Oxide Nanocomposites by a Precipitation Polymerization Process and Their Dielectric and Rheological Characterization. 2014, 47, 2149−2155
[26]Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha, Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang, and Richard B. Kaner. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. 2010, 4, 3845–3852
[27]Sana Frindy, Ana Primo, Hamid Ennajih, Abou elkacem Qaiss, Rachid Bouhfid, Mohamed Lahcini, Mokhtar Essassi, Hermenegildo Garcia, and Abdelkrim Kadib. Chitosan-graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability. 2017, 167, 297-305
[28]Xuan Liua, Xiaozhen Chengb, Fengzhe Wanga, Longbao Fenga, Yu Wangc, Yanfang Zhengb, and Rui Guoa. Targeted delivery of SNX-2112 by polysaccharide-modified graphene oxide nanocomposites for treatment of lung cancer. 2018, 185, 85–95
[29]Degong Dinga, Qingzhong Xuea, Wenbo Lub, Ya Xiongb, Jianqiang Zhang, Xinglong Panb, and Baoshou Tao. Chemically functionalized 3D reticular graphene oxide frameworksdecorated with MOF-derived Co3O4: Towards highly sensitive andselective detection to acetone. 2018, 259, 289–298
[30]Yanying Wang, Chunya Li, Tsunghsueh Wu, and Xiaoxue Ye. Polymerized ionic liquid functionalized graphene oxide nanosheets as a sensitive platform for bisphenol A sensing. 2018, 129, 21-29
[31]Hamed Hashemi and Hassan Namazi. Sonochemically synthesized blue fluorescent functionalized graphene oxide as a drug delivery system. 2018, 42, 124-133
[32]Aftab A Khan, Eraj H Mirza, Badreldin A Mohamed, Nabeel H Alharthi, Hany S Abdo, Ravish Javed, Rashed S Alhur and Pekka K Vallittu. Physical, mechanical, chemical and thermal properties of nanoscale graphene oxide-poly methylmethacrylate composites. 2018, 0, 1–11
[33]Jingchao Wang, Huating Hu, Xianbao Wang, Chunhui Xu, Min Zhang, and Xiaopeng Shang. Preparation and Mechanical and Electrical Properties of Graphene Nanosheets–Poly(methyl methacrylate) Nanocomposites via In Situ Suspension Polymerization. 2011, 122, 1866–1871
[34]Majid Safajou-Jahankhanemlou, Farhang Abbasi and Mehdi Salami-Kalajahi. Synthesis and Characterization of Poly(methyl methacrylate)/Graphene-Based Thermally Expandable Microcapsules. 2018, 39, 950-960
[35]Ahmad Mohamad Alsabagh, Mohamed A. Betiha, Doaa I Osman, Ahmed I. Hashim, Mohamed M. El-Sukkary, and Tahany Mahmoud. Preparation and Evaluation of Polymethyl Methacrylate-Graphene Oxide Nano-Hybrid Polymers as Pour Point Depressants and Flow Improvers for Waxy Crude Oil. 2016, 30, 7610–7621
[36]Jin Young Jang, Min Seok Kim, Han Mo Jeong, and Cheol Min Shin. Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. 2009, 69, 186–191
[37]Horacio J. Salavagione, Marian A. Gomez, and Gerardo Martı´nez. Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol). 2009, 42, 6331–6334
[38]Aaron Davies, Philippe Audette, Blake Farrow, Fathy Hassan, Zhongwei Chen, Ja-Yeon Choi, and Aiping Yu. Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films. 2011, 115, 17612–17620
[39]Chao Wu, Xingyi Huang, Genlin Wang, Xinfeng Wu, Ke Yang, Shengtao Lib and Pingkai Jiang. Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. 2012, 22, 7010–7019
[40]Jianquan Xu, Yingjun Liu, Jinsheng He, Rongping Zhang, Biao Zuo and Xinping Wang. Surface structures of poly(methyl methacrylate) films influenced by chain entanglement in the corresponding film-formation solution. 2014, 10, 8992–9002
[41]Lei Dong, Jieun Yang, Manish Chhowall, and Kian Ping Loh. Synthesis and reduction of large sized graphene oxide sheets. 2017, 46, 7306-7316
[42]S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar. Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique. 2016, 6, 10319-10325
[43]F.V.Ferreira, F.S.Brito, W.Franceschi, E.A.N.Simonetti, L.S.Cividanes, M.Chipara, and K.Lozano. Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. 2018, 10, 100-109
[44]OrapornWong-u-ra, SanongEkgasit and KanetWongravee. Phase transferring of silver nanoparticles to organic solvents using modified graphene oxide as carrier. 2017, 199, 348-355
[45]Juan Zhang, Liao Xu, Bo Zhou, Yinyan Zhu, and Xiaoqing Jiang. The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine. 2018, 513, 279-286
[46]Mohammad-Reza Azani, Azin Hassanpour, Veronica Carcelén, Carlos Gibaja, Daniel Granados, Ruben Mas-Ballesté, and FelixZamora. Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. 2016, 2, 17-23
[47]Kashinath Lellala, K. Namratha and K. Byrappa. Ultrasonication assisted mild solvothermal synthesis and morphology study of few-layered graphene by colloidal suspensions of pristine graphene oxide. 2016, 226, 522-529
[48]Omid Akhavan, Elham Ghaderi, Samira Aghayee, Yasamin Fereydoonia and Ali Talebia. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. 2012, 22, 13773-13781
[49]Yoshitada Sakai and Hiroshi Tanzawa. Poly(methy1 Methacrylate) Membranes. 1978, 22, 1805-1815
[50]Wei Sun and Fuqian Yang. Cooling-induced formation of honeycomb patterns on pre-cast PMMA films at low temperatures. 2015, 5, 60496-60505
[51]Weizuo Li, Pengfei Yan, Guangfeng Hou, Hongfeng Li, and Guangming Li. Efficient red emission from PMMA films doped with 5,6-DTFI europium(III) complexes: synthesis, structure and photophysical properties. 2013, 42, 11537-11547
[52]M.M. Duvenhage, O.M. Ntwaeaborwa and H.C.Swart. Optical and Chemical Properties of Alq3:PMMA Blended Thin Films. 2015, 2, 4019-4027
[53]G.M. Shanthini, Catherine Ann Martin, N. Sakthivel, Sarath Chandra Veerla, K. Elayaraja, B.S. Lakshmi, K. Asokan, D. Kanjilal, and S. Narayana Kalkura. Physical and biological properties of the ion beam irradiated PMMA-based composite films. 2015, 329, 116-126
[54]H.M. Zidan and M. Abu-Elnader. Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. 2005, 355, 308-317
[55]Alaa Y. AL-Ahmad, Mohammed F. AL-Mudhaffer, Hussain A. Badran, and Chassib A. Emshary. Nonlinear optical and thermal properties of BCP: PMMA films determined by thermal self-diffraction. 2013, 54, 72-78
[56]Edison B. Gibelli, Jiang Kai, Ercules E.S. Teotonio, Oscar L. Malta, Maria C.F.C. Felinto, and Hermi F.Brito. Photoluminescent PMMA polymer films doped with Eu3+-β-diketonate crown ether complex. 2013, 251, 154-159
[57]Jagan Singh Meena, Min-Ching Chu, Ranjodh Singh, Chung-Shu Wu, Umesh Chand, Hsin-Chiang You, Po-Tsun Liu, Han-Ping D. Shieha and Fu-Hsiang Ko. Polystyrene-block-poly(methylmethacrylate) composite material film as a gate dielectric for plastic thin-film transistor applications. 2014, 4, 18493-18502
[58]Saman Salemizadeh Parizi, Gavin Conley, Tommaso Costanzo, Bob Howell, Axel Mellingerbc and Gabriel Caruntu. Fabrication of bariumtitanate / acrylonitrile - butadiene styrene / poly(methyl methacrylate) nanocomposite films for hybrid ferroelectric capacitors. 2015, 5, 76356-76362
[59]Riccardo Mori, Giuseppe Iasilli, Marco Lessi, Ana Belén Muñoz-García, Michele Pavone, Fabio Bellinaa and Andrea Pucci. Luminescent solar concentrators based on PMMA films obtained from a red-emitting ATRP initiator. 2018, 9, 1168-1177
[60]Mei-Ling Wu, Jing Li, Li-Jun Wana and Dong Wang. Monolayer graphene -supported free-standing PS-b-PMMA thin film with perpendicularly orientated microdomains. 2014, 4, 63941-63945
[61]Mei-Ling Wu and Dong Wang, Microdomain orientation control of PS-b-PMMA films enabled by wettability relay of graphene. 2016, 6, 7527-7531
[62]Hui-Jie Zhang, Rui-Qing Fan, Xin-Ming Wang, Ping Wang, Yu-Lei Wang and Yu-Lin Yang. Preparation, characterization, and properties of PMMA-doped polymer film materials: a study on the effect of terbium ions on luminescence and lifetime enhancement. 2015, 44, 2871-2879
[63]Chenglong Hu, Xudong Chen, Jian Chen, Weihong Zhangb and Ming Qiu Zhang. Observation of mutual diffusion of macromolecules in PS/PMMA binary films by confocal Raman microscopy. 2012, 8, 4780-4787

QR CODE