簡易檢索 / 詳目顯示

研究生: 簡劦宏
Sie-Hong Jian
論文名稱: 第三金屬(釕/鉬)對鉑-銥-氧化銥奈米桿的電化學觸媒性質影響
The third metal(Ru/Mo) influences on the electrocatalyst properties of Pt-Ir-IrO2 nanorods
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 周更生
KS Chou
周振嘉
Chen-Chia Chou
陳貞夙
Jen-Sue Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 168
中文關鍵詞: 二氧化銥奈米桿結構特性表面分析甲醇乙醇電化學氧化
外文關鍵詞: Pt, Ru, Mo, Ir, IrO2, nanorods, structure characterization, surface analysis, methanol, ethanol, electro-oxidation
相關次數: 點閱:204下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討第三成份Ru(或Mo)對PtIr-IrO2奈米桿的觸媒活性影響,在發現PtIr-IrO2奈米桿一維材料引人注目的結構與活性後,研究朝向甲醇與乙醇的電化學氧化是可以被預期的下一步。在此碩士論文中,我們合成垂直於氧化鋁單晶基板SA(100)的IrO2奈米桿,並在高真空下將IrO2奈米桿還原。被還原的奈米桿直徑約80-100 nm,高度約1600 nm。已還原奈米桿的Ir晶粒尺寸以Ir(111)及Ir(311)的XRD繞射峰估計約為5nm。Ir晶粒有很高的比例排列在IrO2成長的方向上。我們使用脈衝式電鍍法將Pt和Ru(或Mo)沉積在已還原的奈米桿上。由一氧化碳毒化測試取得觸媒比表面積數值中,Ir-IrO2奈米桿的比表面積約19 m2/g,當Mo被電鍍上去時會減少10-30%的比表面積,如果電鍍Ru是最後一步驟,則比表面積會些微的增加。
Pt與第三成份的電鍍順序對於電化學觸媒活性是一個重要因素。Pt/Ru/Ir/IrO2表示Ru比Pt先電鍍在Ir/IrO2奈米桿上。如果電鍍的順序相反,它的就會被表示成Ru/Pt/Ir/IrO2。在甲醇氧化測試中,Pt/Ru/Ir/IrO2觸媒顯示在高電位區間0.7-0.8 V(vs Ag/AgCl)有高活性,而Ru/Pt/Ir/IrO2觸媒則在低電位區間0.4-0.45V有較高的活性。Pt/Ru/Ir/IrO2的電流密度在高電位區間約為280 mA/mg,Ru/Pt/Ir/IrO2的電流密度在0.4V約為60 mA/mg。同樣的討論也在Pt/Mo/Ir/IrO2和Mo/Pt/Ir/IrO2上,Pt/Mo/Ir/IrO2的電流密度在高電位區間約為230 mA/mg,Mo/Pt/Ir/IrO2的電流密度在0.4V約為40 mA/mg。在甲醇氧化測試中,Ir/IrO2觸媒上沉積Ru比沉積Mo有更多的活性。但是在乙醇氧化測試中,Ir/IrO2觸媒上沉積Pt與Mo則顯示奇特的活性。在乙醇電化學氧化的高電位區間,Pt與Mo沉積在Ir/IrO2觸媒上顯示它們最大電流值為220-250 mA/mg,而當Pt 與Ru沉積在Ir/IrO2觸媒上顯示最大電流值為150-220 mA/mg。


The study on the third-component (Ru or Mo) influences on catalytic properties of PtIr-IrO2 nanorods towards methanol and ethanol electro-oxidation is an expected next step after discovering the attractive structure and properties of this one dimensional materials. In this master thesis, we have synthesized vertically aligned IrO2 nanorods on sapphire (100) substrate and reduced them under high vacuum conditions. The reduced nanorods are of 80-100 nm in diameter and 1600 nm in height. The Ir grain size of reduced nanorods is estimated  5 nm based on the broadened Ir(111) and (311) reflections of X-ray diffraction patterns. A high fraction of Ir grains are oriented in the IrO2 growth direction. Pt and Ru (or Mo) components are decorated using pulsed electrodeposition on the reduced nanorods. The mass-specific surface area of Ir-IrO2 nanorods is around 19 m2g-1, while the Mo electrodeposition decreases the surface area value 10-30%, the Ru electrodeposition if applied as the last step increases the surface area slightly, measured by CO stripping voltammetry.
The electrodeposition sequence of Pt and the third component is an important factor for their electrocatalytic properties. The Pt/Ru/Ir/IrO2 sample means that electrodeposition of Ru was carried out before Pt deposition on Ir/IrO2 nanorods. If the deposition sequence is reversed, the sample is denoted as Ru/Pt/Ir/IrO2. On the methanol oxidation, the Pt/Ru/Ir/IrO2 catalyst exhibits high activity in the high potential range 0.7-0.8 V (vs Ag/AgCl), while the Ru/Pt/Ir/IrO2 catalyst displays better activity in the low potential range 0.4 - 0.45 V. The mass specific current of Pt/Ru/Ir/IrO2 is 280 mAmg-1 in the high potential range. The mass specific current of Ru/Pt/Ir/IrO2 60 mAmg-1 is superior at 0.4 V. The same observation was recorded on Pt/Mo/Ir/IrO2 and Mo/Pt/Ir/IrO2, the mass specific current of Pt/Mo/Ir/IrO2 230 mAmg-1 in the high potential range, while that of Mo/Pt/Ir/IrO2 at 0.4 V is 40 mAmg-1. The Ir/IrO2 catalyst decorated with Ru is more active towards methanol oxidation than Ir/IrO2 decorated with Mo. But the Ir/IrO2 catalyst decorated with Pt and Mo exhibits unusual activity in ethanol oxidation. In ethanol electro-oxidation, the Pt and Mo decorated Ir/IrO2 catalysts display their maximum currents 220-250 mAmg-1, while the Pt and Ru decorated Ir/IrO2 catalysts show the maximum currents 150-220 mAmg-1 in the high potential range.

中文摘要………………………………………………………Ⅰ 英文摘要……………………………………………………………...III 致謝……………………………………………………………………..V 目錄………………………………………...…………………………VII 圖目錄…………………………………………………………………XI 表目錄……………………………………………………………....XVII 第一章 緒論…...…………………………………………............…....1 1.1 IrO2晶體結構...…………………………………………………..….1 1.2 IrO2晶體之金屬電導特性……..………………….……………..….4 1.3 Ir及Pt金屬之晶體結構……………………………..………….…..6 1.4 Ru的晶體結構……………...…..……………………………….…..7 1.5 Mo的晶體結構……………………………………….………….......8 1.6 IrO2薄膜與奈米晶體………………………………...………..…….9 1.7ㄧ維奈米結構材料………………………………...………..………11 1.8 IrO2與Ir金屬的電化學性質……………………………….……...13 1.9 PtRu的電化學性質……………………………………...…………17 2.0 PtMo的電化學性質………………………………….…………….22 第二章 文獻回顧…………………………………………................23 2.1前言……………………………………………………………….....23 2.2直接甲醇燃料電池(DMFC)………………………………………..24 2.3陽極觸媒反應機制…………………………………………….........26 2.4合成陽極觸媒…………………………………………….…………28 2.5研究動機………………………………………………….…………30 第三章 實驗方法及分析儀器……………………………........….31 3.1實驗藥品及規格…………………………………………….………31 3.2分析儀器………………………………………………………….…34 3.3氧化銥奈米桿MOCVD沉積系統…………………………….…...37 3.4實驗流程…………………………………………………………….39 3.4.1晶片潔淨處理……………………………………………………40 3.4.2IrO2奈米桿沉積步驟……………….……………………….…...40 3.4.3高真空下熱還原IrO2奈米桿………………………………....…42 3.4.4製備Ir/IrO2電極………………………………….………….…..43 3.4.5製備鉑釕銥氧化銥電極……………………...………………….43 3.4.6製備鉑鉬銥氧化銥電極…………………………………………44 第四章 結果與討論…………………………………………...........48 4.1 IrO2一維奈米桿結構分析……….……………...…………………48 4.1.1 IrO2奈米桿SEM電鏡圖……….………………………………..49 4.1.2 IrO2奈米桿XRD繞射圖譜……………………………………..51 4.2還原後IrO2奈米桿結構……………........…….…………....….......52 4.2.1 Ir/IrO2奈米桿SEM電鏡圖……………………………..……….52 4.2.2 Ir/IrO2奈米桿XRD繞射圖譜……………………………...……54 4.2.3 Ir-IrO2奈米桿TEM電鏡分析…………...………………………56 4.3 鉑釕銥氧化銥奈米桿陽極觸媒電化學測試...............……………62 4.3.1 Pt含量對Pt/Ru/Ir/IrO2奈米桿催化活性的影響..………………62 4.3.2鍍Pt脈衝式電流密度對Pt/Ru/Ir/IrO2奈米桿催化活性的影響..70 4.3.3 Ru含量對Pt/Ru/Ir/IrO2奈米桿催化作用的影響……………....75 4.3.4 Pt(0.2mg)/Ru(0.01mg)/Ir/IrO2奈米桿催化活性受先後電鍍順序的影響…………………………………………………………....84 4.3.5 Ru(0.01mg)/Pt(0.2mg)/Ir/IrO2奈米桿與Pt(0.2mg)/Ru(0.01mg)/Ir/ IrO2奈米桿的XPS組成分析………………………………….....88 4.3.6 Ru(0.01mg)/Pt(0.2mg)/Ir/IrO2奈米桿與Pt(0.2mg)/Ru(0.01mg)/Ir /IrO2奈米桿分別和Pt(0.2mg)/Ir/IrO2奈米桿與John Matthey商業PtRu觸媒催化活性的比較…………….…………………....95 4.3.7 Ru(0.01mg)/Pt(0.2mg)/Ir/IrO2奈米桿及Pt(0.2mg)/Ru(0.01mg)/Ir/ IrO2奈米桿的長時間觸媒測試………………………….…....103 4.3.8 不同組成奈米桿與Johnson Matthey商業PtRu觸媒H+脫附比表面積與CO吸附比表面積的比較…….…………………...107 4.4 鉑鉬銥氧化銥奈米桿陽極觸媒電化學測試………….................112 4.4.1 Pt含量對Pt/Mo/Ir/IrO2奈米桿催化活性的影響……….……..112 4.4.2鍍Pt脈衝式電流密度對Pt/Mo/Ir/IrO2奈米桿催化作用的影響………………………………………………………………119 4.4.3 Mo含量對Pt/Mo/Ir/IrO2奈米桿催化作用的影響………….…124 4.4.4 Pt(0.2mg)/Mo(0.03mg)/Ir/IrO2奈米桿催化活性受先後電鍍順序的影響……………………………………………………....…128 4.4.5 Mo(0.03mg)/Pt(0.2mg)/Ir/IrO2奈米桿與Pt(0.2mg)/Mo(0.03mg) /Ir/IrO2奈米桿XPS組成分析……………............................…132 4.4.6 Mo(0.03mg)/Pt(0.2mg)/Ir/IrO2奈米桿與Pt(0.2mg)/Mo(0.03mg)/ Ir/IrO2奈米桿分別和Pt(0.2mg)/Ir/IrO2奈米桿與John Matthey商業PtRu觸媒催化活性的比較...........................................…139 4.4.7 Mo(0.03mg)/Pt(0.2mg)/Ir/IrO2奈米桿及Pt(0.2mg)/Mo(0.03mg) /Ir/IrO2奈米桿的長時間觸媒測試........................................…147 4.4.8 不同組成奈米桿與Johnson Matthey商業PtRu觸媒H+脫附比表面積與CO吸附比表面積的比較......................................…151 第五章 結論…...…………………....................................................156 參考文獻………..........................................…………………………160

1. JCPDS file, Iridium oxide 43-1019
2. L. F. Mattheiss, Phys. Rev. B, 13 (1976) 2433
3. 余樹楨, “晶體之結構與性質”, 國立編譯館, (1989) 280
4. W. D. Ryden, A. W. Lawson, and C. C. Sartain, Phys. Rev. B, 1 (1970) 1494
5. R. R. Daniels, and G. Margaritiondo, Phys. Rev. B, 29 (1984) 1813
6. 陳信義, “冷壁式有機金屬化學氣相沉積法製備二氧化銥薄膜及其特性分析”, 台灣科技大學, (2001)
7. T. Nakamura, K. Nakao, A. Kamisawa, and H. Takasu, Jpn. J. Appl. Phys.Part 1, 34 (1995) 5184
8. T. Tamura, K. Matsuura, H. Ashida, K. Kondo, and S. Otani, Appl. Phys. Lett., 74 (1999) 3395
9. T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, Appl. Phys. Lett., 65 (1994) 1522
10. A. Osaka, T. Takatsuna, and Y. Miura, J. Non-Cryst. Solids, 178 (1994) 313
11. N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, Thin Solid Films, 235 (1993) 35
12. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, and H. Takenaka, J. Electrochem. Soc., 147 (2000) 2018
13. R. S. Chen, Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S Tsai, and K. K. Tiong, Appl. Phys. Lett, 84 (2004) 1552
14. A. Karthugeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, S. K. Sharma, and I. Eisele, Sens. Actuators B, 85 (2002) 145
15. B. R. Chalamala, Y. Wei, Robert H. Reuss, S. Aggarwal, S. R. Perusse, B. E. Gnade, and R. Ramesh, J. Vac. Sci. Technol. B, 18 (2000) 1919
16. S. Y. Cha and H. C. Lee, Jpn. J. Appl. Phys. Part 2, 10A (1999) L1128
17. Y. S. Huang and S. S. Lin, Solid State Commun., 70 (1989) 517
18. S. Iijima, Nature, 354 (1991) 56
19. C. M. Lieber, Solid State Commun., 107 (1998) 607
20. L. C. Chen, S. W. Chang, C. Y. Wen, J. J. Wu, Y. F. Chen, Y. S. Huang, and K. H. Chen, J. Phys. Chem. Solids, 62 (2001) 1567
21. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science, 291 (2001) 1947
22. W. Yi, T. Jeong, S. Yu, J. Heo, C. Lee, J. Lee, W. Kim, J. B. Yoo, and J. Kim, Adv. Mater., 14 (2002) 1464
23. E. A. Whitsitt and A. R. Barron, Nano Lett., 3 (2003) 775
24. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science, 292 (2001) 1897
25. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater., 13 (2001) 113
26. J. J. Wu and S. C. Liu, J. Phys. Chem. B, 106 (2002) 9546
27. J. J. Wu and S. C. Liu, Adv. Mater. 14 (2002) 215
28. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater., 12 (2000) 746
29. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, J. Phys. Chem. B, 106 (2002) 1274
30. Y. Liu, J. Dong, and M. Liu, Adv. Mater., 16 (2004) 353.
31. D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, Adv. Mater., 15 (2003) 1022
32. B. C. Satishkumar, A. Govindaraj, M. Nath, and C. N. R. Rao, J. Mater. Chem., 10 (2000) 2115
33. J. V. Ryan, A. D. Berry, M. L. Anderson, J. M. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, D. R. Rolison, and C. I. Merzbacher, Nature, 406 (2000) 169
34. K.W. Cheng, Y. T. Lin, C. Y. Chen, C. P. Hsiung, J. Y. Gan, J. W. Yeh, C. H. Hsieh, and L. J. Chou, Appl. Phys. Lett 88 (2006) 043115
35. J. M. Hu, J. Q. Zhang, and C. N. Cao, Int. J. Hydrogen Energy, 29 (2004) 791
36. C. P. de Pauli and S. Trasatti, J. Electroanal. Chem., 538-539 (2002) 145
37. A. J. Terezo and E. C. Pereira, Electrochimica Acta, 45 (2000) 4351
38. M. V. Kortenaar, J. F. Vente, D. J. W. IJdo, S. Mller, and R. Ktz, J. power Sources, 56 (1995) 51
39. R. Kotz and S. Stucki, Electrochimica Acta, 31 (1986) 1311
40. F. I. Mattos-Costa, P. de Lima-Net, S. A. S. Machado, and L. A. Avaca, Electrochimia Acta, 44 (1998) 1515
41. R. D. Meyer, S. F. Cogan, T. H. Nguyen, and R. D. Rauh, IEEE trans on Natural Systems and Rehabilitation Engineering, 9 (2001) 2
42. S. C. Mailley, M. Hyland, P. Mailley, J. M. McLaughlin, and E. T. McAdams, Mater. Sci. Eng’ng., 21 (2002) 167
43. A. Blau,C. Ziegler, M. Heyer, F. Endres, and G. W. Gopel, Biosenser & Bioelectronics, 12 (1997) 883
44. A. Norlin, J. Pau, and C. Leygraph, J. Electrochem. Soc., 152 (2005) J85
45. S. D. Yim, W.Y. Lee, Y. G. Yoon, Y. J. Sohn, G. G. Park, T.H. Yang, and C. S. Kim, Electrochimica Acta , 50 (2004) 713
46. S. D.Yim, G. G. Park, Y. J. Sohn, W. Y. Lee, Y. G. Yoon, T. H. Yang, S. K. Um, S. P. Yu, and C. S. Kim, Int. J. Hydrogen Energy, 30 (2005) 13450
47. A. Hamnett and B. J. Kennedy, Electrochimica Acta, 33 (1988)1613
48. H. Tsaprailis and V. I. Birss, Electrochem. Solid-State Lett., 7 (2004) A348
49. A. Chen, D. J. La Russa, and B. Miller, Langmuir, 20 (2004) 9695
50. R. Gmez and M. J. Weavrz, Langmuir, 14 (1998) 2525
51. C. Tang, S. Zou, M. W. Severson, and M. J. Weaver, J. Phys. Chem. B, 102 (1998) 8546
52. R. Gmez and M. J. Weaver, J. Phys. Chem. B, 102 (1998) 3754
53. R. Gmez and M. J. Weaver, J. Electroanal. Chem., 435 (1997) 205
54. M. M. Hefny and S. Abdel-Wanees, Electrochimica Acta, 41 (1996) 1419
55. R. Ortiz, O. P. Marguez., and C. Gutierrez, J. Phys. Chem., 100 (1996) 8389
56. S. Wasmus, A. Kuver, “Methanol oxidation and direct methanol fuel cells: a selective review”, Journal of Electroanalytical Chemistry, 461(1999) 14-31.
57. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, “A review of anode catalysis in the direct methanol fuel cell”, Journal of Power Sources, 155(2006) 95-110.
58. E. V. Spinac, A. O. Neto, T. R. R. Vasconcelos, M. Linardi, “Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process”, Journal of Power Sources, 137(2004) 17-23.
59. T. C. Deivaraj, J. Y. Lee, “Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study”, Journal of Power Sources, 142(2005) 43-49.
60. L. Jiang, G. Sun, X. Zhao, Z. Zhou, S. Yan, S. Tang, G. Wang, B. Zhou, Q. Xin, “Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells”, Electrochimica Acta, 50(2005) 2371-2376.
61. Z. B. Wang, G. P. Yin, P. F. Shi, “Effects of ozone treatment of carbon support on Pt–Ru/C catalysts performance for direct methanol fuel cell”, Carbon, 44(2006) 133-140.
62. E. V. Spinac, A. O. Neto, M. Linardi, “Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles”, Journal of Power Sources, 129(2004) 121-126.
63. M. Watanabe, S. Motoo, “Electrocatalysis by ad-atoms PartII. Enhancement of the Oxidation of Methonal on Platinum by Ruthenium ad-atoms”, Electroanalytical Chemistry and Interfacial Electrochemistry, 60(1975) 267-273.
64. T. Frelink, W. Visscher, J.A.R. van Veen, “On the role of Ru and Sn as promotos of methanol”, Surface Science, 335(1995) 353-360.
65. T. Frelink, W. Visscher, J. A. R. van Veen, “Measurement of the Ru Surface Content of Electrocodeposited PtRu Electrodes with the Electrochemical Quartz Crystal Microbalance: Implications for Methanol and CO Electrooxidation”, Langmuir, 12(1996) 3702-3708.
66. H. A. Gasteiger, N. MarkoviC, P. N. Ross, Jr., E. J. Cairns, “CO Electrooxidation on Well-Characterized Pt-Ru Alloys”, J. Phys. Chem., 98(1994) 617-625.
67. A. Kabbabi, R. Faure, R. Durand, B. Beden , F. Hahn, J.-M. Leger , C. Lamy, “In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes”, Journal of Electroanalytical Chemistry, 444(1998) 41-53.
68. S. T. Kuk, A. Wieckowski, “Methanol electrooxidation on platinum spontaneously deposited on unsupported and carbon-supported ruthenium nanoparticles”, Journal of Power Sources, 141(2005) 1-7.
69. K. Sasaki , J. X. Wang , M. Balasubramanian , J. McBreen, F. Uribe , R. R. Adzic, “Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability”, Electrochimica Acta, 49(2004) 3873-3877.
70. S. R. Brankovic, J. X. Wang, R. R. Adzˇic, “Pt Submonolayers on Ru Nanoparticles A Novel Low Pt Loading, High CO Tolerance Fuel Cell Electrocatalyst”, Electrochemical and Solid-State Letters, 4(2001) A217-A220.
71. S. R. Brankovic, J. McBreen, R. R. Adzˇic, “Spontaneous deposition of Pt on the Ru(0001) surface”, Journal of Electroanalytical Chemistry, 503(2001) 99-104.
72. A. A. El-Shafei, R. Hoyer, L. A. Kibler, D. M. Kolb, “Methanol Oxidation on Ru-Modified Preferentially Oriented Pt Electrodes in Acidic Medium”, Journal of The Electrochemical Society, 15(2004) F141-F145.
73. P. Waszczuk, G.-Q. Lu, A. Wieckowski, C. Lub, C. Rice, R. I. Masel, “UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis”, Electrochimica Acta, 47(2002) 3637-3652.
74. A. Lamouri, Y. Gofer, Y. Luo, G. S. Chottiner, D. A. Scherson, “Low-Energy Electron Diffraction, X-ray Photoelectron Spectroscopy, and CO-Temperature-Programmed Desorption Characterization of Bimetallic Ruthenium-Platinum Surfaces Prepared by Chemical Vapor Deposition”, J. Phys. Chem.,B, 105(2001) 6172-6177.
75. T. D. Jarvi, T. H. Madden, E. M. Stuve, “Vacuum and Electrochemical Behavior of Vapor Deposited Ruthenium on Platinum (111) ”, Electrochemical and Solid-State Letters, 2(1999) 224-227.
76. G. Tremiliosi-Filho, H. Kim, W. Chrzanowski, A. Wieckowski, B. Grzybowska, P. Kulesza, “Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes ‘decorated’ by ruthenium adlayers”, Journal of Electroanalytical Chemistry, 467(1999) 143-156.
77. J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, “How To Make Electrocatalysts More Active for Direct Methanol OxidationsAvoid PtRu Bimetallic Alloys!”, J. Phys. Chem. B, 104(2000) 9772-9776.
78. H. M. Villullas, F. I. Mattos-Costa, L. O. S. Bulho˜es, “Electrochemical Oxidation of Methanol on Pt Nanoparticles Dispersed on RuO2”, J. Phys. Chem. B, 108(2004) 12898-12903.
79. L. X. Yang, R. G. Allen, K. Scott, P. A. Christenson, S. Roy, “A study of PtRuO2 catalysts thermally formed on titanium mesh for methanol oxidation”, Electrochimica Acta, 50(2005) 1217-1223.
80. Z. Chen, X. Qiu, B. Lu, S. Zhang, W. Zhu, L. Chen, “Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells”, Electrochemistry Communications, 7(2005) 593-596.
81. K. C. Kwiatkowski, S. B. Milne, S. Mukerjee, C. M. Lukehart, “Synthesis of Pt–Mo/Carbon Nanocomposites from Single-Source Molecular Precursors: A (1:1) PtMo/C PEMFC Anode Catalyst Exhibiting CO Tolerance”, Journal of Cluster Science, 16(2005) 251-272.
82. S. Zafeiratos, G. Papakonstantinou, M. M. Jacksic, S. G. Neophytides, “The effect of Mo oxides and TiO2 support on the chemisorption features of linearly adsorbed CO on Pt crystallites: an infrared and photoelectron spectroscopy study”, Journal of Catalysis, 232(2005) 127-136.
83. K. Waki, K. Matsubara, K. Ke, Y. Yamazaki , “Self-Organized Pt/SnO2 Electrocatalysts on Multiwalled Carbon Nanotubes”, Electrochemical and Solid-State Letters, 8(2005) A489-A491.
84. L. X. Yang, C. Bock, B. MacDOUGALL, J. Park, “The role of the WOx ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction”, Journal of Applied Electrochemistry, 34(2004) 427-438.
85. B. N. Grgur, G. Zhuang, M. M. Marvovich, J. Phys. Chem. B, 101(1997) 3910
86. B. N. Grgur, G. Zhuang, N. M. Markovic, P. N. Ross, J. Phys. Chem. B, 102(1998) 2494
87. B. N. Grgur, G. Zhuang, N. M. Markovic, P. N. Ross, J. Electrochem. Soc., 146(1999) 1613
88. S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N. Grgur, N. M. Markovic, P. N. Ross, J. R. Giallombardo, E. S. de Castro, Electrochem. Solid State Lett., 2(1999) 12
89. G. Samjeské, H. Wang, T. Loffler, H. Baltruschat, Electrochim. Acta, 47(2002) 3681
90. S. Jayaraman, J. Phys. Chem. B, 107(2003) 5221
91. P. Gouérec, M.C. Denis, D. Guay, J.P. Dodelet, R. Schulz, J. Electrochem. Soc., , 147(2000) 3989
92. S. Mukerjee, R. C. Urian, Electrochim. Acta, 47(2002) 3219
93. A. Pozio, L. Giorgi, E. Antolini, E. Passalacqua, Electrochim. Acta, 46(2000) 555
94. M. Gotz, H. Wendt, Electrochim. Acta, 43(1998) 3637
95. T. Ioroi, N. Fujiwara, Z. Siroma, K. Yasuda, Y. Miyazaki, Electrochem. Commun., 4(2002) 442
96. D. C. Papageorgopoulos, M. Keijzer, F. A. de Bruijn, Electrochim. Acta, 48(2002) 197
97. E. I. Santiago, G. A. Camara, E. A. Ticianelli, Electrochim. Acta, 48(2003) 3527
98. L. Li, B. Q. Xu, Acta Phys. –Chim. Sin., 21(2005) 1132-1137
99. Thorsten Schultz, Su Zhou, and Kai Sundmacher, Chem. Eng. Technal., 24 (2001) 1223
100. R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, and E. S. Smotkin, J. Phys. Chem. B, 104 (2000) 3518
101. W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, and W. Vielstich, J. Phys. Chem. B, 103 (1999) 6968
102. A. K. Shukla, R. K. Raman, N. A. Choudhury, R. K. Priolkar, P. R. Sarode, S. Emura, and R. Kumashiro, J. Electroanal. Chem., 563 (2004) 181
103. B. Beden, F. Kadirgan, C. Lamy, and J. M. Leger, J. Electroanal. Chem., 127 75 (1981)
104. C. J. Zhong and M. M. Maye, Adv. Mater., 13 (2001) 1507
105. A. Hamnett, Catal. Today, 38 (1997) 445
106. T. Kawaguchi, W. Sugimoto, W. Murakami, and W. Takasu, Electrochem. Commun., 6 (2004) 480
107. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D. P. Wilkinson, J. Power Sources, 155 (2006) 95
108. Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, and W. Sugimoto, J. Electrochem. Soc., 147 (2000) 4421
109. M. Wantanabe, M. Uchida, and S. Motoo, J. Electroanal. Chem., 229 (1987) 395
110. Y. Takasu., T. Kawaguchi, W. Sugimoto, and Y. Murakami, Electrochimica Acta, 48 (2003) 3861
111. Z. Liu, X. Lin, J. Y. Lee, W. S. Zhang, M. Han, and L. M. Gan, Langmuir, 18 (2002) 4054
112. C.Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, and Y. Yan, Nano Lett. 4 (2004) 345
113. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk, Science, 280 (1998) 1735
114. W. C. Choi, J. D. Kim, and S. I. Woo, Catal Today, 74 (2002) 235
115. S. R. Brankovic, J. McBreen, and R. R. Adžić, J. Electroanal. Chem., 503 (2001) 99
116. H. Y. H. Chan, C. G. Takoudis, M. J. Weaver, J. Cataly. 172 (1997) 336
117. G. K. Wertheim and H. J Guggenheim, Phys Rev., B22 (1980) 4680
118. T. D. Tran and H. L. Stanely, Anal. Chem., 65 (1993) 1805
119. T. Kawaguchi, W. Sugimoto, Y. Murakami, Y. Takasu, Electrochem. Commun., 6(2004) 480
120. J. G. Lee, Y.J Park, H. Y. Pyo, J. G. Kim, K. Y. Jee, W. H. Kim, Y. Jeon, J. Alloys and compounds, 298 (2000) 291-294

QR CODE