簡易檢索 / 詳目顯示

研究生: 蔡奕堃
I-Kune Tsai
論文名稱: 嗜甲烷菌之甲烷單氧化酶 (pMMO) 及其重組 (PmoB) 次單元和甲醇脫氫酶 (MDH) 的純化,表徵和催化電化學研究
Purification, Characterization, and the Catalytic Electro-chemical Study of the Particulate Methane Monooxygenase (pMMO) with its Recombinant Subunit B Variants and Methanol Dehydrogenase (MDH) from Methylococcus capsulatus (Bath)
指導教授: 俞聖法
Sheng-Fa Yu
江志強
Jyh-Chiang Jiang
口試委員: 陳長謙
Sunney I. Chen
陳皇州
Huang-Chou Chen
章為皓
Wei-Hau Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: 嗜甲烷菌甲烷單氧化酶甲醇脫氫酶催化電化學
外文關鍵詞: Catalytic Electro-chemical, Methylococcus capsulatus, Particulate Methane Monooxygenase, Methanol Dehydrogenase
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要----------------------------------------------------------------------------------I Abstract---------------------------------------------------------------------------III 誌謝--------------------------------------------------------------------------------V Table of Contents---------------------------------------------------------------VII Lists of Figures--------------------------------------------------------------------X List of Tables--------------------------------------------------------------------XII I. Introduction-------------------------------------------------------------------1 1-1 Purpose--------------------------------------------------------------------1 1-2 Motivation----------------------------------------------------------------2 II. Background and Significance----------------------------------------------3 2-1 Methylococcus capsulatus (Bath)-------------------------------------4 2-2 C1 proteins in Methylococcus capsulatus (Bath)-------------------7 2-2-1 soluble methane monooxygenase (sMMO)------------------7 2-2-2 particulate methane monooxygenase (pMMO)--------------7 2-2-3 Methanol dehydrogenases (MDH)---------------------------10 2-3 Construction of the expression plasmids pMAL-p2X (PmoB33-414 & PmoB55-414)---------------------------------------------------------------11 2-4 Electrocatalysis---------------------------------------------------------13 2-4-1 Cyclic voltammetry--------------------------------------------13 2-4-2 The protein concentration about electrocatalytic-----------15 2-4-3 Electron transfer rate-------------------------------------------15 2-5 Cryogenic Electron Microscopy-------------------------------------16 III. Methods and Material------------------------------------------------------17 3-1 Chemicals---------------------------------------------------------------17 3-2 Instruments and equipment-------------------------------------------19 3-3 Cell culture of Methylococcus capsulatus (Bath)------------------20 3-3-1 Growth medium for culturing --------------------------------20 3-3-2 Cell culture of Methylococcus capsulatus (Bath)----------23 3-4 Cell culture of Escherichia coli (E. coli) ---------------------------24 3-5 Isolation of MDH and pMMO from M. capsulatus (Bath) cells 3-5-1 Purification of MDH-------------------------------------------25 3-5-2 Purification of pMMO-----------------------------------------26 3-6 Determination of the molecular mass of purified MDH----------27 3-7 Preparation and purification of the recombinant MBP-PmoB protein------------------------------------------------------------------------28 3-7-1 Preparation of membranes ------------------------------------28 3-7-2 Purification of membrane proteins---------------------------29 3-7-3 Western blotting------------------------------------------------29 3-8 Protein quantification--------------------------------------------------30 3-9 Quantitative of ICP-OES ---------------------------------------------31 3-9-1 Copper quantification------------------------------------------31 3-9-2 Calcium quantification ----------------------------------------32 3-10 The electrocatalytic reaction----------------------------------------32 3-11 Protein structure analysis (Cryo-EM)------------------------------33 IV. Results and Discussion-----------------------------------------------------35 4-1 Protein purified of pMMO from M. capsulatus (Bath) cells-----35 4-2 Protein purified of MDH from M. capsulatus (Bath) cells-------37 4-3 Electrocatalytic pMMO, PmoB33-414 and PmoB55-414 in the membranes-------------------------------------------------------------------40 4-4 Analysis of the purified pMMO structure--------------------------43 Discussion-------------------------------------------------------------------46 V. Conclusion and Future work----------------------------------------------50 5-1 Conclusion--------------------------------------------------------------50 5-2 Future work-------------------------------------------------------------51 VI. References-------------------------------------------------------------------53 Supplementary information ----------------------------------------------------57

    Shipham, M. C.; Bartlett, K. C.; Crill, P. M.; Harriss, R. C.; and Blaha, D. Atmospheric methane measurements in central New England: An analysis of the long-term trend and the seasonal and diurnal cycles. J. Geophys. Res. Atmos. 1980, 103 (9), 10621-10630.
    2. Periana, R. A.; Taube, D. J.; Evitt, E. R.; Löffler, D. G.; Wentrcek, P. R.; Voss, G.; Masuda, T. A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol. Science. 1993, 259 (5093), 340-343.
    3. Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative. Science. 1998, 280 (5363), 560-564.
    4. Sohngen, N. L. Uber Bakterien, welche Methan als kohlenstoffnahrung und energiequelle gebrauchen. Centr. Bakt. Parasitenkd. Infectionsk. 1906, 15, 513–517. 5. Semrau, J. D.; DiSpirito, A. A.; Yoon, S. Methanotrophs and copper . FEMS
    Microbiol. Rev. 2010 , 34 (4), 496 531.
    6. Foster, J. W.; Davis, R. H. A Methane-Dependent Coccus, with Notes on Classification and Nomenclature of Obligate, Methane-Utilizing Bacteria. J. Bacteriol. 1996, 91 (5), 1924–1931.
    7. Hanson, R. S.; Hanson, T. E. Methanotrophic bacteria. Microbiol Rev. 1996, 60 (2), 439-471.
    8. Kao, W. C.; Chen, Y. R.; Yi, E. C.; Lee, H.; Tian, Q.; Wu, K. M.; Tsai, S. F.; Yu, S. S. F.; Chen, Y. J.; Aebersold, R.; Chan, S. I. Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J. Biol. Chem. 2004, 279 (49), 51554-51560.
    54
    9. Chen, K. H. C.; Chen, C. L.; Tseng, C. F.; Yu, S. S. F.; Ke, S. C.; Lee, J. F.; Nguyen, H. T.; Elliott, S. J.; Alben, J. O.; Chen, S. I. The copper clusters in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath). J. Chin. Chem. 2004, Soc. 51, 1081–1098.
    10. Yu, S. S. F.; Chen, K. H. C.; Tseng, Y. H. M.; Wang, Y. S.; Tseng, C. F.; Chen, Y. J.; Huang, D. S.; Chan, S. I. Production of high quality pMMO in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 2003, 185 (20), 5915-5924.
    11. Kao, W. C.; Wang V. C. C.; Huang, Y. C.; Yu, S. S. F.; Chang, T. C.; Chan S. I. Isolation, purification, and characterization of hemerythrin from Methylococcus capsulatus (Bath). J. Inorg. Biochem.J. Inorg. Biochem. 2008, 102 (8), 1607-1614.
    12. Grosse, S.; Laramee, L.; Wendlandt, K. D.; McDonald, I. R.; Miguez, C. B.; Kleber, H. P. Purification and Characterization of the Soluble Methane Monooxygenase of the Type II Methanotrophic Bacterium Methylocystis sp. Strain WI 14. Appl. Environ. Microbiol. 1999, 65(9), 3929–3935.
    13. Murrell, J. C.; McDonald, I. R.; Gilbert, B. Regulation of expression of methane monooxygenases by copper ions. Trends microbiol. 2000, 8 (5), 221-225.
    14. Cook, S. A.; Shiemke, A. K. Evidence that copper is a required cofactor for the membrane-bound form of methane monooxygenase. J. Inorg. Biochem. 1996, 63 (4), 273-284.
    15. Balasubramanian, R.; Smith, S. M.; Rawat, S.; Yatsunyk, L. A.; Stemmler, T. L.; Rosenzweig, A. C. Oxidation of methane by a biological dicopper centre. Nature. 2010, 465 (7294), 115–119.
    16. Lieberman, R. L.; Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature. 2005, 434 (7030), 177-182.
    55
    17. Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J. Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry. 2004, 43 (15), 4421-4430.
    18. Zheng, H.; Lipscomb, J. D. Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling. Biochemistry. 2006, 45 (6), 1685-1692.
    19. Kay, C. W. M.; Mennenga, B.; Görisch, H.; and Bittl, R. Structure of the pyrroloquinoline quinone radical in quinoprotein ethanol dehydrogenase. J. Biol. Chem. 2006, 281 (3), 1470–1476.
    20. Oubrie, A.; Rozeboom, H. J.; Kalk, K. H.; Huizinga, E. G.; and Dijkstra, B. W. Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni: structural basis for substrate oxidation and electron transfer. (2002) J. Biol. Chem. 2002, 277 (5), 3727–3732.
    21. Culpepper, M. A.; and Rosenzwig, A. C. Structure and protein-protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath). Biochemistry. 2014, 53 (39), 6211−6219.
    22. Gvozdev, A. R.; Tukhvatullin, I. A.; Gvozdev, R. I. Quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases. Biochemistry (Moscow). 2012, 77 (8), 843−856.
    23. Oubrie, A.; Rozeboom, H. J.; Kalk, K. H.; Olsthoorn, A. J. J.; Duine, J. A.; and Dijkstra, B. W. Structure and mechanism of soluble quinoprotein glucose dehydrogenase. EMBO J. 1999, 18, 5187–5194.
    24. Anthony, C. The quinoprotein dehydrogenases for methanol and glucose. Arch. Biochem. Biophys. 2004, 428 (1), 2−9.
    25. Anthony, C.; Williams, P. The structure and mechanism of methanol dehydrogenase. Biochim. Biophys. Acta. 2003, 1647 (1-2), 18−23.
    56
    26. Chan, S. I.; Lu, Y. J.; Nagababu, P.; Maji, S.; Hung, M. C.; Lee, M. M.; Hsu, I. J.; Minh, P. D.; Lai, J. C. H.; Ng, K. Y.; Ramalingam, S.; Yu, S. S. F.; Chan, M. K. Efficient oxidation of methane to methanol by dioxygen mediated by tricopper clusters. Angew. Chem. Int. Ed.Angew. Chem. Int. Ed. Engl.Engl. 20132013, , 52 (52 (1313)),, 37313731--3735.3735.
    27. Lu, Y. J.; Hung, Mu. Cheng.; Chang, B. T. A.; Lee, T. L.; Lin, Z. H.; Tsai, I-K.; Chen, Y. S.; Chang, C. S.; Tsai, Y. F.; Chen, K. H. C.; Chan, S. I.; Yu, S. S. F. The PmoB subunit of particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath): The CuI sponge and its function. J. Inorg. Biochem. 2019, 196, 110691. 28. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner's Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95 (2), 197-206. 29. Heinze, J. Cyclic Voltammetry-"Electrochemical Spectroscopy". New Analytical Methods (25). Angew. Chem. Int. Ed. Engl. 1984, 23 (11), 831–847.
    30. Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101 (1), 19−28. 31. Tivol, W. F.; Briegel, A.; Jensen, G. J. An improved cryogen for plunge freezing. Microsc. Microanal. 2008, 14 (5), 375–379.
    32. Chan, S. I.; Yu, S. S. F. Copper protein constructs for methane oxidation. Nat. Catal. 2019, 2, 286-287.

    無法下載圖示 全文公開日期 2025/07/09 (校內網路)
    全文公開日期 2025/07/09 (校外網路)
    全文公開日期 2025/07/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE