簡易檢索 / 詳目顯示

研究生: 吳旻紘
Min-Hung WU
論文名稱: 鐵-31錳-1.5鋁-0.6碳合金鋼之時效相變化研究
Phase transformations during aging processes in an Fe-31Mn-1.5Al-0.6C alloy
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
李志偉
Jyh-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 碳化物M23C6鐵錳鋁合金
外文關鍵詞: carbid
相關次數: 點閱:604下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文的合金成份為鐵-30.8錳-1.53鋁-0.6碳(wt.%)。合金於1100℃的溫度下為單一的沃斯田體相。於700℃以上處理之合金的組成相與固溶處理後的狀態相似。
當合金經溫度為650℃以下的時效處理後,於沃斯田體晶粒間有M23C6碳化物的成核成長,此 M23C6碳化物之晶格常數a約為1.040 nm,而沃斯田體之晶格常數a約為0.362 nm。當此M23C6碳化物是沿著沃斯田體晶界處成核成長,其析出的數量會隨著時效時間的增長而變多。而在時效溫度為550℃時,M23C6碳化物之析出量是為最多,故推斷550℃為本合金之M23C6碳化物析出之鼻部溫度。
由於本合金經固溶處理後為單一的沃斯田體相,而合金經時效處理後,於晶界處有析出的M23C6碳化物與鄰近之一的沃斯田體基材保持有立方晶對立方晶的方位關係。本論文發現此種立方晶對立方晶的方位關係至少存在有二種型式;其最常被觀察到者為[001]C//[001]γ及(200)C//(200)γ。另一為[001]C//[001]γ及(220)C //(200)γ,其中下標C表示M23C6碳化物,下標γ表示沃斯田體。此新方位關係為M23C6碳化物之晶帶軸Z = 001與沃斯田體之晶帶軸Z = 001分別相對旋轉了約45°之新方位關係,其為這是本論文首次發現之M23C6碳化物與沃斯田體相的新方向關係。故M23C6碳化物於沃斯田體晶粒間的析出成長,可以至少以二種不同之變異體成核成長。


In this study, our purpose was to study the structure changes of Fe- 30.8Mn-1.53Al-0.6C (wt. %) alloy. At temperature of 1100 ℃, the alloy is a single phase of austenite. After 100-hr aging at 900, 800 or 700 ℃, the alloy showed no change, but remained mostly austenite.
After 100-hr aging at 650, 600, 550 and 500 ℃, M23C6 carbides nucleated and grew on the austenitic grain boundaries. The lattice parameter of M23C6 carbide is about 1.040 nm, and the austenite is about 0.362 nm. At 550 ℃ the mount of M23C6 carbide was the most, making 550 ℃ the nose temperature for the precipitation of M23C6 carbides in this alloy.
There are two different cube-cube orientation relationships between M23C6 carbide and austenite grains. The most common one is [001]C//[001]γ and (200)C//(200)γ. The other is [001]C//[001]γ and (220)C //(200)γ, where the subscript C represents M23C6 carbide and γ represents austenite. The difference between these two orientation relationships is that the [001]C//[001]γ and (220)C //(200)γ orientation relationship rotated along the [001] axis about 45 degrees from the M23C6 carbide-austenite zone axis, resulted in the [001]C//[001]γ and (200)C//(200)γ relationship. This is a new M23C6 carbide-austenite orientation relationship, seen for the first time in this study. It is concluded there are, at least two variants of M23C6 carbide nucleated and grew at austenite boundaries.

第一章 前 言...........................1 第二章 文獻回顧.........................3 2.1 固態相變化..........................3 2.1.1 擴散型相變化......................3 2.1.2 非擴散型相變化....................4 2.2鐵錳碳合金的共析反應.................5 2.3 合金鋼中的碳化物....................6 2.4 M23C6碳化物.........................7 2.5 κ型碳化物...........................8 第三章 實驗方法.........................22 3.1 合金熔煉............................22 3.2 合金鑄錠加工........................23 3.3 合金熱處理..........................23 3.4 試片製作流程........................24 3.5 分析儀器............................27 第四章 結果與討論......................34 4.1 高溫熱處理..........................34 4.2 低溫時效處理........................35 4.3 κ型碳化物...........................41 4.4 M23C6與沃斯田體之方位關係...........41 第五章 結 論..........................69 參考文獻................................71

1.R.E. Reed-Hill, “Physical Metallurgy Principle”, 3rd, (1992) .
2.C.R. Hutchinson, R.E. Hackenberg, G. J. Shiflet, Acta Mat. 52, 3565 (2004).
3.D.S. Zhou, G.J. Shiflet, Scripta Metallurgica , 27, 1215 (1992).
4.C.R. Hutchinson and G.J. Shiflet, Scripta Meterialia, 50, 1 (2004) .
5.S.A. Hackey and G.J. Shiflet, Acta Metall., 35, 1017 (1987).
6.S.A. Hackney, G.J. Shiflet, Scripta Metal., 19, 757 (1985).
7.薛凱云,“鐵-12錳-4鋁-0.5碳合金鋼之亞共析型反應研究”,國立台灣科技大學,碩士論文(2007)。
8.許中杰,”鐵-20錳-4鋁-0.5碳合金鋼之時效相變化研究”, 國立台灣科技大學,碩士論文(2008) 。
9.Y.L. Lin, C.P. Chou, Scripta Metall., 27, 67 (1992).
10.D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2/e, (1992).
11.A.J. Boger, W.G. Burgers, Acta Metallurgica, 12, 255 (1964) .
12.L.Bracke, L.Kestens, Scripta Meterialia, 57, 385 (2007) .
13.E.Bayraktar, F.A. Khalid, Journal of Materials Processing Technology, 147, 145 (2004) .
14.B.Cina, Acta Metallurgica, 6, 748 (1958) .
15.P.M. Kelly, Acta Metallurgica, 13, 635 (1965) .
16.林東一,“鐵-21錳-0.4碳合金之麻田散體相變化研究”,國立台灣科技大學,碩士論文(2007) 。
17.H.Baker, “ASM Handbook V.3 Alloy Phase Diagrams”. (1992) .
18.P.Villars, A. Prince, and H. Okamoto, “Handbook of ternary alloy phase diagrams”. (1995) .
19.J.Janovec, M. Svoboda, A. Vyrostkova, A. Kroupa, Met. Sci. A, 402, 288 (2005).
20.K.H. Kuo, C.L. Jia, Acta Metall., 33, No.6, 991 (1985).
21.P.R. Howell, J.V. Bee, R.W. K. Honeycombe, Metall. Trans. A, 10A, 1213 (1979).
22.M.H. Lewis, B.Hattersley, Acta Metall., 13, 1159 (1965).
23.L.K. Singhal, J.W. Martin, Acta Metall., 16, 1159 (1968).
24.B.Weiss, R. Stickler, Metall. Trans., 3, 851 (1972).
25.J.B. Lupton, S. Murphy, J.H. Woodhead, Metall. Trans., 3, 2923 (1972).
26.K.Campbell, R.W.K. Honeycombe, Metal Sci., 8, 197 (1974).
27.R.W.K. Honeycombe, R.F. Mehl, Metall. Trans. A, 7A, 915 (1976).
28.A. Boeuf, R. Caciuffo, S. Crico, Mat. Letters, 2, No.1, 49 (1983).
29.H.J. Goldschmidt, D. Sc., F. Inst. P., F.I.M. “Interstitial Alloys”.
30.W.F. Smith, “Structure and Properties of Engineering Alloys” (1993) .
31.K.H. Han, J.C. Yoon, W.K. Choo, Scripta Metall., 20, 33 (1986) .
32.Y.G. Kim, Y.S. Park and J.K. Han, Metall. Trans. A, 16, 1689 (1985).
33.Y.G. Kim, J.K. Han and E.W. Lee, Metall. Trans. A, 17, 2097 (1986).
34.M.C. Li, H. Chang, P.W. Kao, Materials Chemistry and Physics, 59 96 (1999) .
35.D.B. Williams and C.B. Carter, “Transmission Electron Microscopy”, Plenum (1996).
36.陳力俊等,“材料電子顯微鏡學”,國科會精儀中心 (1997)。

QR CODE