簡易檢索 / 詳目顯示

研究生: 陳冠銘
Kuan-Ming Chen
論文名稱: 鹼激發爐石混凝土抗壓強度影響因子之研究
Study of Influencing Factors on Compressive Strength of Alkali-Activated-Slag Concrete
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 張大鵬
Ta-Peng Chang
黃兆龍
Chao-Lung Hwang
施正元
Jeng-Ywan Shih
張建智
Jiang-Jhy Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 鹼激發混凝土水淬爐石粉抗壓強度迴歸模型
外文關鍵詞: alkali-activated concrete, slag, compressive strength, regression model
相關次數: 點閱:536下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用氫氧化鈉溶液及矽酸鈉溶液等兩種鹼性溶液做為激發劑,激發水淬爐石粉產生鹼激發膠結材料,用以製作鹼激發爐石混凝土,並藉由改變配比中激發量、水固比及矽鈉比做為變數,探討各參數對於鹼激發爐石混凝土抗壓強度及硬固性質之影響。
研究結果顯示:(1)新拌鹼激發爐石混凝土之坍度值在220 mm至270 mm之間;坍流度值為370 mm至660 mm範圍之間,增加水固比會提升鹼激發爐石混凝土流動性,試驗結果顯示配比中拌和水使用多寡將會直接影響工作性。(2)鹼激發爐石混凝土之28天齡期抗壓強度在21.37~52.29 MPa之間,增加配比中氫氧化鈉溶液及矽酸鈉溶液使用量可提升混凝土抗壓強度,每提高2%激發量時,各組抗壓強度增加11~27%之間。(3)試驗組鹼激發爐石混凝土熱傳導係數範圍在0.754~1.53 W/m·K之間,略低於一般常重混凝土之1.0~1.5 W/m·K,水固比0.5之配比有較好隔熱性。(4) 當矽酸鈉使用量與氫氧化鈉溶液使用量分別增加3.0%及1.0%時,鹼激發爐石混凝土28天吸水率分別降低為0.35%及1.13%,顯示較多激發量溶液使用量,會使水化產物生成更多C-S-H膠體,造成混凝土內部孔隙減少。(5)依據七種不同影響因子所組合之自變數,所得七種抗壓強度數學迴歸模式之相關係數從0.42到0.8,其中模型七中由矽離子及鈉離子及水分子總量組合之自變數,可以得到最佳迴歸結果。


In this study, the solutions of sodium hydroxide and sodium silicate were used as the alkali activator to activate slag to make the alkali-activated cementitious binder, which was in turn used to produce the activated slag concrete. The parameters of water-solid ratio and the dosages of activator, silicon-sodium ratio in mix proportion were changed to investigate their effects of various combinations of parameters on physical properties and compressive strength of the alkali-activated slag concrete.
The research results show that: (1) The slump of fresh alkali-activated slag concrete was in the range from 220 to 270 mm, and the slump flow was in the range from 370 to 660 mm, and the increase of water-solid ratio can improve the flowability of alkali-activated slag concrete. Experimental results showed the water in the mix proportion will directly affect the workability. (2) The increase of dosages of activator could enhance the material strength such that the compressive strengths of all mixture at 28 days were in the range from 21.37 to 52.29 MPa. An increase of 2% of activator could increase the concrete compressive strength at 28 days by 11 to 27%.(3) The thermal conductivities of all mixtures were in range from 0.754 to 1.53 W/m•K being slightly lower than those of original Portland cement concrete in range from 0.754 to 1.53 W/m•K. The alkali-activated slag concrete of water-solid ratio of 0.5 had relatively better insulation properties. (4) When the dosage of sodium hydroxide and sodium silicate was increased by 3.0 wt% and 1.0 wt%, respectively, the resulting water absorption of alkali-activated slag concrete at age of 28 days reduced by 0.35% 1.13%, respectively. Hence, the more used dosage of alkali solution caused the hydration product to form more C-S-H gel such that the resulting alkali-activated slag concrete had less internal prorsity. (5) The correlation coefficients for the proposed seven different types of mathematical regression models based on independent variables from seven different combinations of influencing factors were in the range from 0.42 to 0.8, in which the seventh model being based on the independent variable from the combination of total amount of silicon, sodium and water can get the optimal regression results.

摘要 i Abstract ii 致謝 iv 總目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究內容與流程 2 第二章 文獻回顧 5 2.1前言 5 2.2鹼激發材料發展5 2.3鹼激發材料 6 2.3.1爐石粉 6 2.4鹼激發爐石反應機制 8 2.4.1水化反應影響因子 8 2.4.2水化反應機制 9 2.4.3水化產物 10 2.4.4鈣元素角色 11 2.4.5鋁元素角色 11 2.5鹼激發材料因子 12 2.5.1鹼性激發劑 12 2.5.2激發劑pH值 13 2.5.3拌和、養護溫度影響 13 2.5.4鹼性激發劑濃度 14 2.5.5混和使用鹼性溶液影響 15 2.6矽鈉比 16 第三章 試驗計畫 23 3.1試驗內容 23 3.2試驗材料 23 3.3試驗變數與項目 24 3.3.1試驗內容範圍 24 3.3.2試驗變數與項目 25 3.4鹼激發混凝土配比設計 25 3.4.1配比設計 25 3.4.2拌合程序 27 3.5試驗方法 27 3.5.1粒料基本性質試驗 27 3.5.2混凝土新拌性質試驗 29 3.5.3物理性質試驗 30 3.6試驗儀器與設備 32 第四章 鹼激發爐石混凝土試驗結果與分析 48 4.1混凝土新拌性質 48 4.1.1坍度試驗 48 4.1.2坍流度試驗 49 4.2鹼激發爐石混凝土物理性質 50 4.2.1熱傳導係數 50 4.2.2吸水率試驗 52 4.2.3超音波速 53 4.2.4動態彈性模數 54 4.2.5抗壓強度 56 4.3抗壓強度迴歸模型 57 第五章 結論與建議 95 5.1結論 95 5.2建議 96 參考文獻 98

[1]中華民國國家標準,水淬高爐爐渣,CNS總號12223,經濟部中央標準 局,1988。
[2]中華民國國家標準,混凝土及水泥砂漿用水淬高爐爐碴粉,CNS總號12549,經濟部中央標準局,1989。
[3]吳宗翰,鹼激發爐灰砂漿鋼筋握裹性質研究,營建工程系,國立臺灣科技大學,台北市,2014。
[4]李祐帆,鹼激發爐石-轉爐石膠結材物理性質之研究,土木工程學系碩士班,國立成功大學,台南市,2010。
[5]沈得縣、李承効,轉爐石應用於瀝青混凝土鋪面使用手冊及注意事項。
[6]官志恆,鹼活化液模數比及劑量對爐石混凝土性質影響之研究,河海工程學系,國立臺灣海洋大學,基隆市,2011。
[7]林育緯,不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響,營建工程系,國立臺灣科技大學,台北市,2012。
[8]邱友梅,無鹼激發廢玻璃膠結材之研究,土木工程學系碩士班,國立成功大學,台南市,2012。
[9]邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,營建工程系,國立臺灣科技大學,台北市,2012。
[10]涂明和,以氧化鈣與三氧化二鋁成份回歸分析探討鹼激發爐灰砂漿工程性質之影響,營建工程系,國立臺灣科技大學,台北市,2015。
[11]張士晉,摻CFB副產石灰之鹼激發非灰膠凝材料工程性質之研究,土木工程學系碩士班,國立成功大學,台南市,2009。
[12]曹德光、蘇達根、楊占印、宋國勝,偏高嶺石的微觀結構與鍵合反應能力,礦物學報,24(2004)366-372。
[13]許偉哲,TFT-LCD廢玻璃鹼激發膠結材之物理性質,土木工程學系碩士班,國立成功大學,台南市,2009。
[14]許皓翔,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,環境工程學系碩士班,國立宜蘭大學,宜蘭縣,2012。
[15]郭振雄、陳香梅、羅光達,台灣工業部門二氧化碳之排放減量,應用經濟論叢,第95卷,2014。
[16]陳子謙,複合型無機聚合物砂漿之工程性質,營建工程系,國立臺灣科技大學,台北市,2011 (指導教授… )。
[17]陳冠宇,鹼激發爐石基膠體配比因子對其工程性質影響之研究,營建工程系,國立臺灣科技大學,台北市,2010。
[18]黃兆龍,豪華第三版「混凝土性質與行為」,詹氏書局,2002。
[19]黃俊傑,鹼激發爐灰混凝土新拌性質之研究,營建工程系,國立臺灣科技大學,台北市,2016。
[20]楊仁佑,低溫養護對爐石基無機聚合物工程性質影響,營建工程系,國立臺灣科技大學,台北市,2011。
[21]楊宗叡,鹼激發爐灰漿體微觀分析與工程性質研究,營建工程系,國立臺灣科技大學,台北市,2014。
[22]蔡宗和,含轉爐石及灰之鹼激發爐石膠結材,土木工程學系碩士班,國立成功大學,台南市,2011。
[23]鄭百榕,爐石飛灰復合型無機聚合物於常溫及高溫環境之工程性質,營建工程系,國立臺灣科技大學,台北市,2013。
[24]賴琇瑩,鹼激發廢玻璃膠結材之常溫配比研究,土木工程學系碩士班,國立成功大學,台南市,2010。
[25]謝明蒲,廢玻璃鹼激發膠結材之吸水性能研究,土木工程學系碩士班,國立成功大學,台南市,2012。
[26] A, Fernández-Jiménez., A. Palomo., I. Sobrados., & J. Sanz. “The role played by the reactive alumina content in the alkaline activation of fly ashes”. Microporous and Mesoporous Materials, 91 (2006) 111-119.
[27] A,Fernandez-Jimenez, F,Puertas.”Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag”.Materiales de Construction,Vol 47(246), (1997)
[28] Brough, A.R., M. Holloway., J. Sykes, A. Atkinson. “Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid”. Cement and Concrete Research, (2000)
[29] Chi, M. “Effects of modulus ration and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars”. Construction and Building Materials, (2015)
[30] Cho,Y.K., S.W. Yoo., S.H. Jung., K.M.Lee., S.J. Kwon. “Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer”,Construction and Building Materials, Page253-260, (2017)
[31] Davidovits, J. “Synthesis of new high temperature geo-polymers for reinforced plastics/composites”. Society of Plastic Engineers, Brookfield Center,pp151-154, (1979)
[32] Duxson,P., J. L. Provis. “Designing precursors for geopolymer cements”. Journal of the American Ceramic Society, vol. 91, pp. 3864-3869, (2008)
[33] Duxson, P., A. Fernández-Jiménez., J.L. Provis., G.C. Lukey., A. Palomo., J.S.J. Van Deventer. “Geopolymer technology: The current state of the art”. J Mater Sci, 42 ,pp. 2917-2933, (2007)
[34] Fernando, P.T., C.G. Joao., S.Jalali.“ Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products”.Construction and Building Materials, vol.22, no.7, pp.1305-1314, (2008)
[35] Gao,X., Q.L.Yu., H.J.H Brouwers., “Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packink model”. Construction and Building Materials, (2016)
[36] Gebregziabiher, B.S., J. Robert., & S.P. Thomas. “Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders”. Construction and Building Materials, (2016)
[37] Glukhovsky, V.D. “Soil silicates”. Kiev:USSR:Gostroiizdat , (1959)
[38] Granizo, M.L., S. Alonso., M.T. Blanco-Varela., A. Palomo. “Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction”. Journal of the American Ceramic Society, (2002)
[39] Keeley, P.M., N.A. Rowson., T.P. Johnson and D.E. Deegan, “The effect of the extent of polymerisation of a slag structure on the strength of alkali-activated slag binders”. International Journal of mineral Processing, (2017)
[40] Komnitsas, k., D. Zaharaki., V. Perdikatsis. “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers”. Journal of Hazardous Materials, Pages 760-768, (2009)
[41] Krizan, D., & B.Zivanovic. “Effect of Dosage and Modulus of Water Glass on Early Hydration of Alkali-Slag Cements”.Cement and Concrete Research, 32(8), pp.1181-1188, (2002)
[42] Li, C., H. Sun, and L. Li. “A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements” Cement and Concrete Research, vol. 40, pp. 1341-1349, 9// (2010)

[43] Mostafa, N. Y., S. A. S. El-Hemaly., E. I. Al-Wakeel., S. A. El-Korashy., and P. W. Brown. “Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag” Cement and Concrete Research, vol. 31, pp. 899-904, 5// (2001)
[44] Palomo, A., M.W.Grutzeck., M.T.Blanco.“Alkali-activated fly ashes: A cement for the future”.Cement and Concrete Research, vol.29, no.8, pp1323-1329, (1999)
[45] Partha,S.D., N.Pradip., S.K.Prabir. “Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature”. Procedia Engineering, (2015)
[46] Phair, J.W., J.S.J. Van Deventer. “Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers” International Journal of Mineral Processing, 66, pp.121-143, (2002)
[47] Puertas,F., F.J.A., M.T. Blanco-Varela. “Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate”. Cement and Concrete Research, (2004)
[48] Purdon, A.O.“The action of alkalis on blast furnace slag”. Journal of the Society of Chemical Industry, vol.59, no.9, pp191-202, (1940)
[49] Roy, D.M.“Alkali-activated cements Opportunities and challenges”.Cement and Concrete Research,vol.29, no.2,pp.249-254,(1999)
[50] Shi, C. & L. Yinyu. “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement”. Cement and Concrete Research, vol. 19, pp. 527-533, (1989).
[51] Shi, C.& R.L. Day. “A calorimetric study of early hydration of alkali-slag cements”. Cement and Concrete Research, pp.1333-1346,(1995)
[52] Shi,C.& R.L. Day. “Some factors affecting early hydration of alkali-slag cements”. Cement and Concrete Research, 26, pp.439-447, (1996)
[53]Silva,P.D., K.Sagoe-Crenstil., V.Sirivivatnanon.“Kinetics of geopolymerization: Role of Al2O3 and SiO2”. Cement and Concrete Research, vol37, pp.512-518, (2007)
[54] Song, S., D. Sohn., H.M. Jennings., T.O. Mason.. “Hydration of alkali-activated ground granulated blast furnace slag”. J. Mater. Sci., (35) , pp. 249-257, (2000)
[55] Song, S., H.M. Jennings. “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag” . Cement and Concrete Research, (1999)
[56] Swamy, R.N., A. Bouikni, Some engineering properties of slag concrete as influenced by mix proportioning and curing, ACI Materials Journal, 1990.
[57] Wan, H.W., S. Zhonghe., Z.Lin. “Analysis of geometric characteristics of GGBS particles and their influences on cement properties”. Cement and concrete Research, vol34, no.1, pp.133-137, (2004)
[58]Wang, K., P.N. Lemougna., Q. Tang, W. Li, Y. He, X. Cui. “Low temperature depolymerization and polycondensation of a slag-based inorganic polymer”. Ceramics International, (2017)
[59] Wang, P.Z., R. Trettin, and V. Rudert.“ Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems”. Advances in Cement Research,vol. 17 Issue 4, pp.161-167, (2005)
[60] Wang, S.D. and K. L. Scrivener. “Hydration products of alkali activated slag cement”. Cement and Concrete Research, vol. 25, pp. 561-571, 4// (1995)
[61] Wang, S.D. “ Alkaline activation of slag”. Imperial College, University of London, (1995)
[62] Wang, S.D., K. L. Scrivener, and P. L. Pratt. “Factors affecting the strength of alkali-activated slag” Cement and Concrete Research, vol. 24, pp. 1033-1043, // (1994)
[63] Wang, S.D., K.L. Scrivener. “29Si and 27Al NMR study of alkali-activated slag”. Cement and Concrete Research, (2003)
[64] Wang, W.C., H.Y. Wang., M.H.Lo. “The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration”. Construction and Building Materials, (2015).
[65] Wastiels, J., X,Wu., S.Faignet., G.Patfoort. “Mineral polymer based on fly ash” In:Proceedings of the 9th International Conference on Solid Waste Management,Widener University Philadephia,PA, (1993)
[66] Xu, H., J.S.J.van Deventer, G.C.Lukey. “Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures”. Industrial & Engineering Chemistry Research, 40 , pp.3749-3756, (2001).
[67] Yip,C.K., G.C. Lukey., J.L. Provis. “Effect of calcium silicate sources on geopolymerisation”. Cement and Concrete Research, (2008)
[68] Yip,C.K., G.C. Lukey., J.S.J. van Deventer. “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation”, Cement and Concrete Research,.(2005)
[69] Yuan,R., Q.Gao., S.Ouyang. “Study on structure and latent hydraulic activity of slag and its activation” mechanism.Journal of Wuban University of Technology (in Cbinese), (1987)

QR CODE