簡易檢索 / 詳目顯示

研究生: 蔣岳翔
Yue-Xiang Jiang
論文名稱: 304不鏽鋼敏化現象之再解釋
The re-visit of sensitization in 304 stainless steel
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 陳士勛
Shih-Hsun Chen
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 120
中文關鍵詞: 304 不鏽鋼敏化現象相變化麻田散體相
外文關鍵詞: 304 stainless steel, sensitization, phase transformation, martensite phase
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎳鉻系不鏽鋼具有優良抗氧化與抗腐蝕性質,為廣泛使用之商用不鏽鋼,但其具有一特殊的敏化現象如下:經過焊接的不鏽鋼,於熱影響區會發生粒間腐蝕的情形,其原因為Cr23C6碳化物析出在晶界處,使晶界附近的基地鉻含量降低,讓原本在晶界附近連續的氧化鉻保護膜變得不再連續,容易發生粒間腐蝕,稱之為敏化現象。本論文針對304不鏽鋼焊接熱影響區、304不鏽鋼、與額外加0.2 wt.%碳之304不鏽鋼進行研究。發現304不鏽鋼焊接熱影響區有大量BCC麻田散體相的存在。於304不鏽鋼做1100°C的固溶處理,發現約2 m寬的BCC麻田散體晶粒出現於沃斯田體的晶界處。並且對304不鏽鋼與加碳的304不鏽鋼進行在500°C至1000°C恆溫處理後,發現Cr23C6碳化物析出量較多的溫度約落於900°C至800°C之間,並觀察到較多BCC麻田散體晶粒出現,推測麻田散體相的出現與鉻含量的減少有關。這解釋了敏化現象除了要考慮貧鉻區的沃斯田體相,可能需要將BCC麻田散體晶粒出現,降低不鏽鋼抗腐蝕性能納入考量。


This paper focuses on the phase changes of the heat-affected zone of 304 stainless steel after welding, and the heat treatment of 304 stainless steel and 304 stainless steel with 0.2 wt.% carbon. It is generally believed the reason for the sensitization of 304 stainless steel is that Cr23C6 carbide precipitates at grain boundaries, which reduces the chromium near grain boundaries. The chromium oxide protective film that was originally continuous at grain boundaries will become discontinuous, thus intergranular corrosion is more likely to occur. However, after analyzing the constituent phases of the heat-affected zone of 304 stainless steel during welding, a large number of BCC martensite phases was found. Afterward, the 304 stainless steel underwent solution treatment at 1100°C for one hour and then water-quenched to room temperature. It was found that in addition to the expected austenite phase, there was also the appearance of BCC martensite phase. After heat treatment of 304 stainless steel and 304 stainless steel with 0.2wt% carbon at 1000°C to 500°C for 20 hours, more BCC martensite phases was found at the aging temperature with more precipitation of Cr23C6 (between 850°C to 750°C). It can be speculated that the appearance of martensite phases is related to the reduction of chromium, which happens to be the temperature range where sensitization occurs. This shows that in addition to the austenite phase in the chromium-poor area, the influence of BCC martensite may need to take into consideration on the corrosion resistance of 304 stainless steel.

摘 要 英文摘要 誌 謝 目  錄 圖 目 錄 表 目 錄 第一章 前 言 第二章 文獻回顧 2.1 擴散型相變化 2.2 非擴散型相變化 2.3 敏化現象 第三章 實驗方法 3.1 304不鏽鋼和加碳304不鏽鋼試片製備 3.2 焊接 3.3 熱處理 3.4 儀器與試片製備流程 第四章 結果與討論 4.1 304不鏽鋼焊接熱影響區相組成 4.2 304不鏽鋼和加碳304不鏽鋼高溫組成相 4.3 304不鏽鋼和加碳304不鏽鋼低溫組成相 4.4 304不鏽鋼的敏化現象 第五章 結 論 第六章 參考文獻

[1] C.H. Desch, "William Herbert Hatfield. 1882-1943". Obituary Notices of Fellows of the Royal Society, 4(13) (1944) 616.
[2] H.M. Cobb. The history of stainless steel. ASM International the Materials Information Society, 2010.
[3] D.A. Porter. Phase transformations in metals and alloys. CRC Press, 2008.
[4] A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock. "Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel." Metallurgical and Materials Transactions A, 37 (2006) 1875.
[5] E.A. Trillo, L.E. Murr. "Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel." Acta Materialia, 47 (1999) 235.
[6] J. Liu, D. Kaoumi. "Use of in-situ TEM to characterize the deformation-induced martensitic transformation in 304 stainless steel at cryogenic temperature." Materials Characterization, 136 (2018) 331.
[7] J. Talonen, H. Hanninen. "Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels." Acta Materialia, 55 (2007) 6108.
[8] J.Y. Choi, W. Jin. "Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels." Scripta Materialia, 36 (1997) 99.
[9] X.F. Li, W. Ding, J. Cao, L.Y. Ye, J. Chen. "In situ TEM observation on martensitic transformation during tensile deformation of SUS304 metastable austenitic stainless steel." Acta Metallurgica Sinica, 28 (2015) 302.
[10] T. Suzuki, H. Kojimam, K. Suzuki, T. Hashimoto, M. Ichihara. "An experimental study of the martensite nucleation and growth in 18/8 stainless steel." Acta Metallurgica, 25 (1977) 1151.
[11] M. Chen, S. Gao, D. Terada, A. Shibata, N. Tsuji. "Characteristics of deformation induced martensite in SUS304 austenitic stainless steel deformed at RT and −60 °C." Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, Springer International Publishing, (2016) 563.
[12] N. Tsuchida, Y. Morimoto, T. Tonan, Y. Shibata, K. Fukaura, R. Ueji. "Stress-induced martensitic transformation behaviors at various temperatures and their TRIP effects in SUS304 metastable austenitic stainless steel." ISIJ international, 51(1) (2011) 124.
[13] K. Kinoshita, R. Nakazaki, E. Matsumoto. "Variation of the magnetic properties of the martensite phase of SUS304 steel due to tensile deformation." International Journal of Applied Electromagnetics and Mechanics, 45(1-4) (2014) 45.
[14] B. Cao, T. Iwamoto, P.P. Bhattacharjee. "An experimental study on strain-induced martensitic transformation behavior in SUS304 austenitic stainless steel during higher strain rate deformation by continuous evaluation of relative magnetic permeability." Materials Science and Engineering: A, 774 (2020) 138927.
[15] B. Cao, T. Iwamoto. "An experimental study on strain rate sensitivity of strain‐induced martensitic transformation in SUS304 by real‐time measurement of relative magnetic permeability." Steel Research International, 88(12) (2017) 1700022.
[16] X. Li, J. Chen, L. Ye, W. Ding, P. Song. "Influence of strain rate on tensile characteristics of SUS304 metastable austenitic stainless steel." Acta Metallurgica Sinica (English Letters), 26 (2013) 657.
[17] M. Okayasu, H. Fukui, H. Ohfuji, T. Shiraishi, "Strain-induced martensite formation in austenitic stainless steel." Journal of Materials Science, 48 (2013) 6157.
[18] N. Sato, T. Yoshino, T. Shiratori, S. Nakano, M. Katoh. "Accelerative effects of diffusion bonding of recrystallization with reversion of deformation-induced martensite in SUS304." ISIJ International, 56(10) (2016) 1825.
[19] N. Tsuchida, E. Ishimaru, M. Kawa. "Role of deformation-induced martensite in TRIP effect of metastable austenitic steels." ISIJ International, 61(2) (2021) 556.
[20] Z.Y. Xue, Z.H.O.U. Sheng, X.C. Wei. "Influence of pre-transformed martensite on work-hardening behavior of SUS304 metastable austenitic stainless steel." Journal of Iron and Steel Research, International, 17(3) (2010) 51.
[21] J.Y. Choi, T. Fukuda, T. Kakeshita. Isothermal martensitic transformation in a sensitized SUS304 stainless steel under magnetic field. Materials Science Forum, 654 (2010) 130.
[22] T. Hayashi, A. Eiji. "Microstructure evolution at severely-deformed ferrite/martensite interfaces in a layer-integrated steel." ISIJ international, 50(2) (2010) 272.
[23] Y. Nakasone, Y. Iwasaki, T. Shimizu, S. Kasumi. "Plasticity-induced martensitic transformation around fatigue cracks in type SUS304 austenitic stainless steel." Key Engineering Materials, 243 (2003) 327.
[24] M. Nakajima, M. Akita, Y. Uematsu, K. Tokaji. "Effect of strain-induced martensitic transformation on fatigue behavior of type 304 stainless steel." Procedia Engineering, 2(1) (2010) 323.
[25] K.Y. Zhang, Y.S. Pyoun, X.J. Cao, B. Wu, R. Murakami. "Fatigue properties of SUS304 stainless steel after ultrasonic nanocrystal surface modification (UNSM)." International Journal of Modern Physics: Conference Series, 6 (2012) 330.
[26] H. Sakai, D. Morishita, Y. Watanabe. "Magnetic functionally graded material manufactured with α'to γ reverse martensitic transformation in a deformed SUS304 stainless steel." Materials science forum, 308 (1999) 579.
[27] M. Kato, Y. Torisaka. "Effect of retained martensite on high temperature deformation of SUS304 with a fine grain size. " Tetsu-to-Hagane, 83(3) (1997) 211.
[28] J.H. Lee, T. Fukuda, T. Kakeshita. "Isothermal martensitic transformation in sensitized SUS304 austenitic stainless steel at cryogenic temperature." Materials Transactions, 50 (2009) 473.
[29] Y.W. Yen, J.W. Su, D.P. Huang. "Phase equilibria of the Fe–Cr–Ni ternary systems and interfacial." Journal of Alloys and Compounds, 475 (2008) 270.
[30] F. Sadeghi, T. Zargar, W.K. Jong, Y.U. Heo, J.S. Lee, C.H. Yim. "Role of the annealing twin boundary on the athermal α′-martensite formation in a 304 austenitic stainless steel." Acta Materialia, 20 (2021) 1.
[31] M. Godec, D.A. Skobir Balantič. “Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures.” Scientific Reports, 6 (2016) 1.

無法下載圖示 全文公開日期 2026/01/31 (校內網路)
全文公開日期 2028/01/31 (校外網路)
全文公開日期 2028/01/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE