簡易檢索 / 詳目顯示

研究生: 林千農
Chien-nung Lin
論文名稱: 根據COI進行貨物擺放並考慮倉儲系統內的行走時間分析
Travel time analysis with COI-based storage policies in low-level picker-to-part system
指導教授: 潘昭賢
Chao-Hsiew Pan
口試委員: 郭伯勳
Po-Hsun Kuo
許總欣
Tsung-Shin Hsu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 44
中文關鍵詞: 揀貨作業批量訂單行走時間訂單體積指標
外文關鍵詞: order picking, order batching, travel time, cube-per-order index (COI)
相關次數: 點閱:186下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是在兩個撿貨區的倉儲系統下提出一個檢貨時間的評估模式。揀貨人員根據訂單進行貨物揀取而各貨物的擺放是根據訂單體積指標(Cube-Per-Order Index; COI)為基礎,並利用最少的儲存空間達到最小化行走距離之目的,進而達到揀貨績效的提升。本論文先推導出行走時間的一、二階動差並考量允許訂單批量處理的情況下求得平均揀貨時間。此外,本論文也利用eM-Plant模擬軟體建構倉儲模式,並進行模擬測試,並探討最佳訂單批量及揀貨路徑中所運用的COI策略各項參數分析。


    This thesis presents a throughput evaluation model in a low-level picker-to-part system, which is a 2-block warehouse. The order-picker retrieves items in the tour according orders and assumed that items are assigned to storage location on the basis of the cube-per-order index (COI) rule. Adopt return policy and obtain the first and second moments of the order-picker’s travel time. Then we consider order batching problem in the warehouse and assume that orders arrive according to a Poisson process. Apply these moments to estimate the average throughput time. The results generated by the model are compared and validated via simulation which modeled by software eM-Plant. Furthermore, the effects of batch size, storage strategy on the travel distance are discussed in the paper.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV TABLE INDEX V FIGURE INDEX VI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 CHAPTER 3 FRAMWORK AND TRAVEL TIME ANALYSIS 8 3.1 The Warehouse Model 8 3.1.1 Storage Strategy 8 3.1.2 Warehouse System 10 3.2 Notation 11 3.3 Travel Time Estimation 12 3.3.1 Occupancy Problem 12 3.3.2 First Moment of Travel Time 13 3.3.3 Second Moments of Travel Time 16 CHAPTER 4 THE QUEUE MODEL FOR WAREHOUSE 19 4.1 Service Time Analysis 19 4.2 Throughput Time Analysis for Ek/G/1 Queueing Model 22 CHAPTER 5 PERFORMANCE EVALUATION of ROUTING POLICIES 24 5.1 Description of The Warehouse Layout 24 5.2 Distance Evaluation of The Within Aisle 25 5.3 Computation Result 26 5.4 The Simulation Model 28 5.5 Results of Simulation 28 CHAPTER 6 CONCLUSION 31 APPENDIX 32 REFRENCES 42

    [1] Bartholdi, J.J. and Hankman, S. T., 2007, Warehouse & distribution science. Available on line at: http://www.tli.gatech.edu/research/warehousing/
    [2] Bender, Paul S., “Mathematical Modeling of the 20/80rule: theory and practice.” Journal of business Logistics, Vol. 2, 139-157.
    [3] Caron, F., Marchet, G., and Perego, A., “Routing policies and COI-based storage policies in picker-to-part systems,” International Journal of Production Economics, Vol. 36, (1998), 713-732.
    [4] Caron, F., Marchet, G., and Perego, A., “Optimal layout in low-level picker-to-part systems,” International Journal of Production Economics, Vol. 38, (2000), 101-117.
    [5] Chew, E. P. and Tang, L. C., “Travel time analysis for general item location assignment in a rectangular warehouse.” European Journal of Operational Research, Vol. 112, (1999) , 582-597.
    [6] Coyle, J. J., Bardi, E. J., and Langley, C. J., The Management of Business Logistics, St. Paul, MN: West, 1996.
    [7] De Koster, R., Le-Duc, T., “Travel distance estimation and storage zone optimization in a 2-block class-based storage strategy warehouse” International Journal of Production Research, Vol. 43, (2005) , 3561-3581
    [8] De Koster, R., Le-Duc, T. and Roodbergen, K. J., ”Design and control of warehouse order picking: A literature review.” European Journal of Operational Research, Vol. 182, (2007) , 481-501.
    [9] De Koster, R., Le-Duc, T., “Travel time estimation and order batching in a 2-block warehouse.” European Journal of Operational Research, Vol. 176, (2007) , 374-388.
    [10] Frazelle, E. H. and Sharp, G. P., “Correlated assignment strategy can improve any order-picking operation.” Industrial Engineering, Vol. 21, (1989), 33-37.
    [11] G.., Petersen Charles, and Aase Gerald, “A comparison of picking, storage, and routing policies in manual order picking.” International Journal of Production Economics, Vol. 92, (2004), 11-19
    [12] Gibson, D. R., and Sharp, G. P., “Order Batching Procedures,” European Journal of Operational Research, Vol. 58, (1992), 57-67.
    [13] Goetschalckx, M., and Ratliff, H. D., “Efficient Algorithm to Cluster Order Picking Items in a Wide Aisle.” Engineering Costs and Production Economics, Vol. 13, (1988) , 263-271.
    [14] Hall, R. W., “Distance approximation for routing manual pickers in warehouse.” IIE Transactions , Vol. 25 , (1993) , 77-87.
    [15] Heskett, J. L., “Cube-Per-Order Index – A Key to Warehouse Stock Location,” Transportation and distribution Management, Vol. 3, (1963), 27-31.
    [16] Hwang, H., Kim, D. G., “Order-batching heuristics based on cluster analysis in a low-level picker-to-part warehousing system” International Journal of Production Research, Vol. 43, (2005), 3657-3670.
    [17] Hwang, H., Oh, Y. H., and Cha, C. N., “An evaluation of routing policies for order-picking operations in low-level picker-to-part system, International Journal of Production Research, Vol. 42, 3873-3889.
    [18] Jarvis, J. M. and McDowell, E. D., “Optimal product layout in an order picking warehouse,” IIE Transactions, Vol. 23, (1991), 93-102.
    [19] Johnson, N. L., and Kotz, S., Urn Models and Their Application, Wiley, New York, 1977.
    [20] Kallina, C., and Lynn J., “Application of the Cube-Per-Order Index Rule for Stock Location in Distribution Warehouse,” Interfaces, Vol. 7, (1976), 37-46.
    [21] Petersen II, C. G. and Schmenner, R. W., “An evaluation of routing policies in an order picking operation,” Decision Sciences, Vol. 30, (1999),481-501.
    [22] Ratliff, H. Donald, and Rosenthal, Arnon S., “Order-Picking in a Rectangular Warehouse: A Solvable Case of The Traveling Salesman Problem.” Operations Research, Vol. 31, (1983), 507-521.
    [23] Roodbergen, K. J. and De Koster, R., 2001a, Routing methods for warehouse with multiple cross aisles. International Journal of Production Research, 39, 1865-1883.
    [24] Sakagewa, H., “An approximation formula ” Annals Institute of Statistical Mathematics, Vol. 29, (1977), 67-75.
    [25] Tompkins, J. A., White, J. A., Bozer, Y. A. Frazelle, E. H. and Tanchoco, J. M. A., 2003, Facilities Planning. New York: John Wiley.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2013/06/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE