簡易檢索 / 詳目顯示

研究生: 雷蒙德
Jean-Raymond Fontin
論文名稱: 考量揀貨錯誤和揀貨面阻塞之倉儲揀貨策略組合問題
Combining planning problems in order picking systems considering picking errors and pick-face blocking
指導教授: 林希偉
Shi-Woei Lin
口試委員: 洪一薰
I-Hsuan Hong
陳穆臻
Mu-Chen Chen
蔣明晃
Minghuang Chiang
王孔政
Kung-Jeng Wang
曹譽鐘
Yu-Chung Tsao
林希偉
Shi-Woei Lin
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 106
中文關鍵詞: Pick-face blockingPicking errorsPlanning ProblemsOrder picking systemMixed Integer Linear ProgrammingDistance modelsStorage location assignment policyPicker Routing policyOrder Batching policyPaperless order pickingSimulated AnnealingData Envelopment AnalysisFull Factorial design
外文關鍵詞: Pick-face blocking, Picking errors, Planning Problems, Order picking system, Mixed Integer Linear Programming, Distance models, Storage location assignment policy, Picker Routing policy, Order Batching policy, Paperless order picking, Simulated Annealing, Data Envelopment Analysis, Full Factorial design
相關次數: 點閱:295下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然不同訂單揀選系統的績效可能會受到揀選策略之間交互作用的影響,但過去的研究往往偏重於獨立策略的選擇和評估。本研究在考慮揀選錯誤和揀選位置阻塞的條件下,評估訂單揀選策略和無紙揀選技術及其對訂單揀選系統效能的聯合影響。為了研究路由策略和揀選技術的聯合效能,我們採用了多階段方法,該方法結合了混合整數線性規畫、資料包絡分析以及排序和選擇方法,並且透過混合整數線性規劃模型在考量揀貨員等待時間下找到訂單揀貨吞吐量時間。結果指出遍歷-語音揀選組合和中點-語音揀選組合表現同樣出色,然優勢技術只能在一定程度上提高揀選效率。結果同時指出,訂單批處理、儲存位置分配和揀貨員路由策略的聯合效應對訂單揀貨吞吐量時間有顯著影響,而當中表現最好的組合是最優路由與隨機存儲分配和 FCFS 訂單批處理策略的組合。本研究提供了考慮揀貨位置阻塞和揀貨錯誤情況下,訂單揀貨策略為何以及如何產生交互作用之重要洞見。


    While complicated interaction effects on system performance might exist among various picking policies, picking planning problems are usually evaluated as standalone policies. This dissertation aims to evaluate planning problems and paperless picking technologies and their joint effect on the performance of order picking systems considering picking errors and pick-face blocking. In order to investigate the joint performance of routing policies and picking technologies, we follow a multistage approach that combines mixed integer linear programing algorithms, data envelopment analysis, and ranking and selection methods. Then, we formulate a mixed-integer linear programming model that accounts for picker waiting time to obtain the order picking throughput time. Results show that traversal-voice picking and midpoint-voice picking combinations perform equally well and that superior technology can enhance picking efficiency only to a certain level, and reveal that the joint effects of order batching, storage locations assignment and picker routing policies have a significant effect on order picking throughput time. The best performing combination is revealed to be a combination of optimal routing with random storage assignment and FCFS order batching policies. The study provides useful insights on how and why order picking planning problems interact with each other when considering pick-face blocking and picking errors.

    List of figures iii List of tables iv List of abbreviations v 1. Introduction 1 1.1. Research background 1 1.2. Research problem 5 1.3. Goals of the dissertation and its outline 6 2. Literature review 8 2.1. Paperless picking and picking errors 8 2.2. Picker blocking and order picking 12 3. Joint comparative analysis of routing heuristics and paperless picking technologies 15 3.1. Materials and methods 15 3.1.1. Stage 1: Parameter Selection 15 3.1.2. Stage 2: Inputs and Outputs Determination 16 3.1.3. Stage 3: Efficiency Determination Using DEA 21 3.1.4. Stage 4: Statistical Sampling and Subset Selection 22 3.2. Results and discussions 23 3.2.1. Picking Rate 25 3.2.2. Order Picking Performance 25 3.3. Conclusion 32 4. Combining planning problems and pick-face blocking 34 4.1. Research hypothesis 34 4.1.1. Storage – batching: 34 4.1.2. Storage – routing: 36 4.1.3. Batching – routing: 37 4.2. Problem statement and methodology 37 4.2.1. The joint order batching, sequencing and picker routing problem (JOBSPRP-B) 38 4.2.2. Formulation of a mixed-integer linear programming for the JOBSPRP-B 43 4.2.3. Relaxation of the problem 46 4.2.4. Distance modeling 49 4.3. Experimental design 60 4.4. Empirical results and discussions 63 4.4.1. Storage location assignment and order batching 68 4.4.2. Storage location assignment and picker routing 70 4.4.3. Order batching and picker routing 73 4.4.4. Storage location assignment, picker routing and order batching 74 4.5. Managerial implications and conclusion 77 5. Conclusions 79 References 82 A) Appendix A. Post hoc results of the main and interactions effects 91

    1. ten Hompel, M.; Schmidt, T. Warehouse Management; 1st ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; ISBN 978-3-540-35218-1.
    2. • Global retail e-commerce market size 2014-2023 | Statista Available online: https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/ (accessed on Apr 13, 2021).
    3. Melacini, M.; Perotti, S.; Rasini, M.; Tappia, E. E-fulfilment and distribution in omni-channel retailing: a systematic literature review. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 391–414, doi:10.1108/IJPDLM-02-2017-0101.
    4. ROBOTIC, V. .
    5. Michel, R. 2020 Warehouse/DC Operations Survey: Covid-19 pandemic hits, operations respond - Modern Materials Handling Available online: https://www.mmh.com/article/2020_warehouse_dc_operations_survey_covid_pandemic_hits_operations_respo (accessed on Apr 13, 2021).
    6. Drury, J. Towards More Efficient Order Picking; IMM monograph; Institute of Logistics, 1988; ISBN 9781870214063.
    7. Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Order Picking Operations. In Facilities Planning; John Wiley & Sons, Ltd (10.1111), 2010; pp. 432–447 ISBN 9780470444047.
    8. De Koster, R.; Le-Duc, T.; Roodbergen, K.J. Design and control of warehouse order picking: A literature review. Eur. J. Oper. Res. 2007, 182, 481–501, doi:10.1016/J.EJOR.2006.07.009.
    9. Grosse, E.H.; Glock, C.H.; Jaber, M.Y. The effect of worker learning and forgetting on storage reassignment decisions in order picking systems. Comput. Ind. Eng. 2013, 66, 653–662, doi:10.1016/j.cie.2013.09.013.
    10. Binos, T.; Adamopoulos, A.; Bruno, V. Decision Support Research in Warehousing and Distribution: A Systematic Literature Review. Int. J. Inf. Technol. Decis. Mak. 2020, 19, 653–693, doi:10.1142/s0219622020300013.
    11. van Gils, T.; Ramaekers, K.; Caris, A.; De Koster, R. Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. Eur. J. Oper. Res. 2018, 267, 1–15, doi:10.1016/j.ejor.2017.09.002.
    12. Petersen, C.G.; Aase, G. A comparison of picking, storage, and routing policies in manual order picking. Int. J. Prod. Econ. 2004, 92, 11–19, doi:10.1016/j.ijpe.2003.09.006.
    13. Öncan, T. MILP formulations and an Iterated Local Search Algorithm with Tabu Thresholding for the Order Batching Problem. Eur. J. Oper. Res. 2015, 243, 142–155, doi:10.1016/j.ejor.2014.11.025.
    14. Masae, M.; Glock, C.H.; Grosse, E.H. Order picker routing in warehouses: A systematic literature review. Int. J. Prod. Econ. 2020, 224, 107564, doi:10.1016/j.ijpe.2019.107564.
    15. Carter, C.R. KNOWLEDGE PRODUCTION AND KNOWLEDGE TRANSFER: CLOSING THE RESEARCH–PRACTICE GAP. J. Supply Chain Manag. 2008, 44, 78–82, doi:10.1111/J.1745-493X.2008.00059.X.
    16. van Gils, T.; Caris, A.; Ramaekers, K.; Braekers, K.; de Koster, R.B.M. Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems. Transp. Res. Part E Logist. Transp. Rev. 2019, 125, 47–73, doi:10.1016/j.tre.2019.02.010.
    17. Battini, D.; Calzavara, M.; Persona, A.; Sgarbossa, F. A comparative analysis of different paperless picking systems. Ind. Manag. Data Syst. 2015, 115, 483–503, doi:10.1108/IMDS-10-2014-0314.
    18. Ludwig, T.D.; Goomas, D.T. Performance, Accuracy, Data Delivery, and Feedback Methods in Order Selection: A Comparison of Voice, Handheld, and Paper Technologies. J. Organ. Behav. Manage. 2007, 27, 69–107, doi:10.1300/J075v27n01_03.
    19. Andriolo, A.; Battini, D.; Calzavara, M.; Gamberi, M.; Peretti, U.; Persona, A.; Pilati, F.; Sgarbossa, F. New RFID pick-To-light system: Operating characteristics and future potential. Int. J. RF Technol. Res. Appl. 2016, 7, 43–63, doi:10.3233/RFT-150071.
    20. Shqair, M.; Altarazi, S.; Al-Shihabi, S. A statistical study employing agent-based modeling to estimate the effects of different warehouse parameters on the distance traveled in warehouses. Simul. Model. Pract. Theory 2014, 49, 122–135, doi:10.1016/j.simpat.2014.08.002.
    21. Dumitrescu, I.; Stützle, T. Combinations of Local Search and Exact Algorithms. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer, Berlin, Heidelberg, 2003; Vol. 2611, pp. 211–223 ISBN 3540009760.
    22. Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 2016, 240, 171–215, doi:10.1007/S10479-015-2034-Y/FIGURES/34.
    23. Deroussi, L.; Grangeon, N.; Norre, S. Optimization of Logistics Systems Using Metaheuristic-Based Hybridization Techniques. Metaheuristics 2016, 381–405, doi:10.1007/978-3-319-45403-0_14.
    24. Burinskiene, A. Order picking process at warehouses. Int. J. Logist. Syst. Manag. 2010, 6, 162–178, doi:10.1504/IJLSM.2010.030958.
    25. ten Hompel, M.; Schmidt, T. Warehouse Management; 1st ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; ISBN 978-3-540-35218-1.
    26. Berger, S.M.; Ludwig, T.D. Reducing warehouse employee errors using voice-assisted technology that provided immediate feedback. J. Organ. Behav. Manage. 2007, 27, 1–31, doi:10.1300/J075v27n01_01.
    27. Glock, C.H.; Grosse, E.H.; Neumann, W.P.; Feldman, A. Assistive devices for manual materials handling in warehouses: a systematic literature review. Int. J. Prod. Res. 2020, 0, 1–24, doi:10.1080/00207543.2020.1853845.
    28. Astigarraga, A.; Lopez-Gasso, A.; Golpe, D.; Beriain, A.; Solar, H.; Del Rio, D.; Berenguer, R. A 21 m operation range RFID tag for “pick to light” applications with a photovoltaic harvester. Micromachines 2020, 11, 1–18, doi:10.3390/mi11111013.
    29. Andriolo, A.; Battini, D.; Calzavara, M.; Gamberi, M.; Peretti, U.; Persona, A.; Pilati, F.; Sgarbossa, F. New RFID pick-to-light system: Operating characteristics and future potential. Int. J. RF Technol. 2016, 7, 43–63, doi:10.3233/RFT-150071.
    30. Yeow, P.H.P.; Goomas, D.T. Ergonomics Improvement in Order Selection in a Refrigerated Environment. Hum. Factors Ergon. Manuf. Serv. Ind. 2014, 24, 262–274, doi:10.1002/hfm.20374.
    31. Dujmešić, N.; Bajor, I.; Rožić, T. Warehouse processes improvement by pick by voice technology. Teh. Vjesn. 2018, 25, 1227–1233, doi:10.17559/TV-20160829152732.
    32. Guo, A.; Wu, X.; Shen, Z.; Starner, T.; Baumann, H.; Gilliland, S. Order Picking with Head-Up Displays. Computer (Long. Beach. Calif). 2015, 48, 16–24, doi:10.1109/MC.2015.166.
    33. Thomas, C.; Panagiotopoulos, T.; Kotipalli, P.; Haynes, M.; Starner, T. RF-pick: comparing order picking using a HUD with wearable RFID verification to traditional pick methods. In Proceedings of the Proceedings of the 2018 ACM International Symposium on Wearable Computers - ISWC ’18; ACM Press: New York, New York, USA, 2018; pp. 168–175.
    34. Wu, X.; Haynes, M.; Zhang, Y.; Jiang, Z.; Shen, Z.; Guo, A.; Starner, T.; Gilliland, S. Comparing order picking assisted by head-up display versus pick-by-light with explicit pick confirmation. In Proceedings of the Proceedings of the 2015 ACM International Symposium on Wearable Computers - ISWC ’15; ACM Press: New York, New York, USA, 2015; pp. 133–136.
    35. Kim, M.K.; Lee, E.Y.; Chang, Y.S. A Study on the Human Factors for a Smart Cart System. Procedia Manuf. 2015, 3, 566–573, doi:10.1016/j.promfg.2015.07.267.
    36. Franzke, T.; Grosse, E.H.; Glock, C.H.; Elbert, R.M. An investigation of the effects of storage assignment and picker routing on the occurrence of picker blocking in manual picker-to-parts warehouses. In Proceedings of the International Journal of Logistics Management; Emerald Group Publishing Ltd., 2017; Vol. 28, pp. 841–863.
    37. Chen, F.; Wang, H.; Qi, C.; Xie, Y. An ant colony optimization routing algorithm for two order pickers with congestion consideration. Comput. Ind. Eng. 2013, 66, 77–85, doi:10.1016/j.cie.2013.06.013.
    38. Van Nieuwenhuyse, I.; de Koster, R.B.M. Evaluating order throughput time in 2-block warehouses with time window batching. Int. J. Prod. Econ. 2009, 121, 654–664, doi:10.1016/j.ijpe.2009.01.013.
    39. Elbert, R.M.; Franzke, T.; Glock, C.H.; Grosse, E.H. Agent-based analysis of picker blocking in manual order picking systems: Effects of routing combinations on throughput time. In Proceedings of the 2015 Winter Simulation Conference (WSC); IEEE, 2015; Vol. 2016-Febru, pp. 3937–3948.
    40. Hong, S. Two-worker blocking congestion model with walk speed m in a no-passing circular passage system. Eur. J. Oper. Res. 2014, 235, 687–696, doi:10.1016/j.ejor.2013.10.013.
    41. Pan, J.C.H.; Wu, M.H. Throughput analysis for order picking system with multiple pickers and aisle congestion considerations. Comput. Oper. Res. 2012, 39, 1661–1672, doi:10.1016/j.cor.2011.09.022.
    42. Heath, B.L.; Ciarallo, F.W.; Hill, R.R. An agent-based modeling approach to analyze the impact of warehouse congestion on cost and performance. Int. J. Adv. Manuf. Technol. 2013, 67, 563–574, doi:10.1007/s00170-012-4505-5.
    43. Gue, K.R.; Meller, R.D.; Skufca, J.D. The effects of pick density on order picking areas with narrow aisles. IIE Trans. 2006, 38, 859–868, doi:10.1080/07408170600809341.
    44. Pan, J.C.-H.; Shih, P.-H. Evaluation of the throughput of a multiple-picker order picking system with congestion consideration. Comput. Ind. Eng. 2008, 55, 379–389, doi:10.1016/j.cie.2008.01.002.
    45. Zhou, L.; Niu, X.; Zhao, S.; Zhao, X.; Cao, N.; Ding, J.; Wang, R. Research on congestion rate of classified storage narrow channel picking system for IoT security. Wirel. Networks 2020, 1–17, doi:10.1007/s11276-020-02372-6.
    46. Lee, I.G.; Chung, S.H.; Yoon, S.W. Two-stage storage assignment to minimize travel time and congestion for warehouse order picking operations. Comput. Ind. Eng. 2020, 139, 106129, doi:10.1016/j.cie.2019.106129.
    47. Srivilas, K.; Cherntanomwong, P. Routing algorithm in warehouse with congestion consideration using an ACO with VLC support. In Proceedings of the 2017 International Electrical Engineering Congress (iEECON); IEEE, 2017; pp. 1–4.
    48. Hong, S. Order batch formations for less picker blocking in a narrow-aisle picking system. Ind. Eng. Manag. Syst. 2015, 14, 289–298, doi:10.7232/iems.2015.14.3.289.
    49. Hong, S.; Johnson, A.L.; Peters, B.A. Large-scale order batching in parallel-aisle picking systems. IIE Trans. 2012, 44, 88–106, doi:10.1080/0740817X.2011.588994.
    50. TAJIMA, E.; SUZUKI, M.; ISHIGAKI, A.; HAMADA, M.; KAWAI, W. Effect of picker congestion on travel time in an order picking operation. J. Adv. Mech. Des. Syst. Manuf. 2020, 14, JAMDSM0072–JAMDSM0072, doi:10.1299/jamdsm.2020jamdsm0072.
    51. Hong, S. Performance evaluation of two-worker operations in a worker-to-cell order assorting system. J. Manuf. Syst. 2020, 56, 414–424, doi:10.1016/j.jmsy.2020.06.007.
    52. Hong, S.; Johnson, A.L.; Peters, B.A. A note on picker blocking models in a parallel-aisle order picking system. IIE Trans. 2013, 45, 1345–1355, doi:10.1080/0740817X.2012.745204.
    53. Pan, J.C.H.; Shih, P.H.; Wu, M.H. Storage assignment problem with travel distance and blocking considerations for a picker-to-part order picking system. Comput. Ind. Eng. 2012, 62, 527–535, doi:10.1016/j.cie.2011.11.001.
    54. Parikh, P.J.; Meller, R.D. Estimating picker blocking in wide-aisle order picking systems. IIE Trans. (Institute Ind. Eng. 2009, 41, 232–246, doi:10.1080/07408170802108518.
    55. Chen, C.-M.; Gong, Y.; De Koster, R.; van Nunen, J.A.E.E. A Flexible Evaluative Framework for Order Picking Systems. Prod. Oper. Manag. 2010, 19, 70–82, doi:10.1111/j.1937-5956.2009.01047.x.
    56. Hong, S.; Johnson, A.L.; Peters, B.A. Batch picking in narrow-aisle order picking systems with consideration for picker blocking. Eur. J. Oper. Res. 2012, 221, 557–570, doi:10.1016/j.ejor.2012.03.045.
    57. Hojaghani, L.; Nematian, J.; Shojaie, A.A.; Javadi, M. Development of an online order batching algorithm in blocked warehouse. J. Intell. Fuzzy Syst. 2019, 37, 2215–2229, doi:10.3233/JIFS-182527.
    58. Amaran, S.; Sahinidis, N. V.; Sharda, B.; Bury, S.J. Simulation optimization: a review of algorithms and applications. Ann. Oper. Res. 2016, 240, 351–380, doi:10.1007/s10479-015-2019-x.
    59. De Koster, R.B.M.; Le-Duc, T.; Zaerpour, N. Determining the number of zones in a pick-and-sort order picking system. Int. J. Prod. Res. 2012, 50, 757–771.
    60. Richards, G. Warehouse management : a complete guide to improving efficiency and minimizing costs in the modern warehouse; Kogan Page Ltd., 2014; ISBN 9780749469344.
    61. De Koster, R.; Balk, B.M. Benchmarking and Monitoring International Warehouse Operations in Europe. Prod. Oper. Manag. 2008, 17, 175–183, doi:10.3401/poms.1080.0013.
    62. Parikh, P.J.; Meller, R.D. Selecting between batch and zone order picking strategies in a distribution center. Transp. Res. Part E Logist. Transp. Rev. 2008, 44, 696–719, doi:10.1016/j.tre.2007.03.002.
    63. Hackman, S.T.; Frazelle, E.H.; Griffin, P.M.; Griffin, S.O.; Vlasta, D.A. Benchmarking Warehousing and Distribution Operations: An Input-Output Approach. J. Product. Anal. 2001, 16, 79–100.
    64. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444, doi:10.1016/0377-2217(78)90138-8.
    65. Johnson, A.; McGinnis, L. Performance measurement in the warehousing industry. IIE Trans. 2010, 43, 220–230, doi:10.1080/0740817X.2010.491497.
    66. Chen, E.J.; Kelton, W.D. Sequential selection procedures: Using sample means to improve efficiency. Eur. J. Oper. Res. 2005, 166, 133–153, doi:10.1016/j.ejor.2003.01.003.
    67. Goldsman, D. A Practical Guide to Ranking and Selection Methods. In The Operations Research Revolution; INFORMS, 2015; pp. 89–110.
    68. Law, A.M. Ranking and Selection. In Simulation Modeling and Analysis; McGraw-Hill Education, 2015; pp. 569–579 ISBN 9781259254383.
    69. Koenig, L.W.; Law, A.M. A procedure for selecting a subset of size m containing the l best of k independent normal populations, with applications to simulation. Commun. Stat. - Simul. Comput. 1985, 14, 719–734, doi:10.1080/03610918508812467.
    70. Dijkstra, A.S.; Roodbergen, K.J. Exact route-length formulas and a storage location assignment heuristic for picker-to-parts warehouses. Transp. Res. Part E Logist. Transp. Rev. 2017, 102, 38–59, doi:10.1016/j.tre.2017.04.003.
    71. Elbert, R.M.; Franzke, T.; Glock, C.H.; Grosse, E.H. The effects of human behavior on the efficiency of routing policies in order picking: The case of route deviations. Comput. Ind. Eng. 2017, 111, 537–551, doi:10.1016/j.cie.2016.11.033.
    72. Chan, F.T.S.; Chan, H.K. Improving the productivity of order picking of a manual-pick and multi-level rack distribution warehouse through the implementation of class-based storage. Expert Syst. Appl. 2011, 38, 2686–2700, doi:10.1016/j.eswa.2010.08.058.
    73. van Gils, T.; Ramaekers, K.; Braekers, K.; Depaire, B.; Caris, A. Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. Int. J. Prod. Econ. 2018, 197, 243–261, doi:10.1016/J.IJPE.2017.11.021.
    74. Ho, Y.C.; Su, T.S.; Shi, Z. Bin Order-batching methods for an order-picking warehouse with two cross aisles. Comput. Ind. Eng. 2008, 55, 321–347, doi:10.1016/j.cie.2007.12.018.
    75. Cano, J.A.; Correa-Espinal, A.A.; Gómez-Montoya, R.A. Mathematical programming modeling for joint order batching, sequencing and picker routing problems in manual order picking systems. J. King Saud Univ. - Eng. Sci. 2020, 32, 219–228, doi:10.1016/j.jksues.2019.02.004.
    76. Ardjmand, E.; Shakeri, H.; Singh, M.; Sanei Bajgiran, O. Minimizing order picking makespan with multiple pickers in a wave picking warehouse. Int. J. Prod. Econ. 2018, 206, 169–183, doi:10.1016/J.IJPE.2018.10.001.
    77. Polten, L.; Emde, S. Scheduling automated guided vehicles in very narrow aisle warehouses. Omega 2021, 99, 102204, doi:10.1016/J.OMEGA.2020.102204.
    78. Zhan, S.H.; Lin, J.; Zhang, Z.J.; Zhong, Y.W. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem. Comput. Intell. Neurosci. 2016, 2016, doi:10.1155/2016/1712630.
    79. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science (80-. ). 1983, 220, 671–680, doi:10.1126/SCIENCE.220.4598.671.
    80. Wang, C.; Lin, M.; Zhong, Y.; Zhang, H. Solving travelling salesman problem using multiagent simulated annealing algorithm with instance-based sampling. Int. J. Comput. Sci. Math. 2015, 6, 336, doi:10.1504/IJCSM.2015.071818.
    81. Chabot, T.; Lahyani, R.; Coelho, L.C.; Renaud, J. Order picking problems under weight, fragility and category constraints. Int. J. Prod. Res. 2017, 55, 6361–6379, doi:10.1080/00207543.2016.1251625.
    82. Roodbergen, K.J.; Koster, R. Routing methods for warehouses with multiple cross aisles. Int. J. Prod. Res. 2001, 39, 1865–1883, doi:10.1080/00207540110028128.
    83. Bretz, F.; Hothorn, T.; Westfall, P. Multiple Comparisons Using R; Chapman and Hall/CRC, 2016; ISBN 9781420010909.

    QR CODE