簡易檢索 / 詳目顯示

研究生: 莊庭語
Ting-Yu Chuang
論文名稱: 股骨遠端鎖定式骨板應力改善-ANSYS模擬分析與機械實驗驗證
Improvements of Distal Locking Plate by Finite Elements Analysis and Biomechanical Test
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 林晉
Jinn Lin
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 112
中文關鍵詞: 股骨遠端鎖定式骨板有限元素生物力學測試工作長度
外文關鍵詞: Distal locking plate, FEA, Biomechanical tests, Working length
相關次數: 點閱:454下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

股骨為人類身上最粗的骨頭,當人在站立或運動時,其不只受到軸向壓
力,也因為其解剖學形狀和周圍肌肉拉力的影響,股骨也受彎曲作用。鎖定式
骨板是目前主要治療方式,所以在骨折發生初期,患者行走、動作皆是以靠著
骨板來承載身體的重量。若是因骨板設計上的缺陷、又或是外科醫師對於鎖定
骨板方式的技術與知識有所不足,經長時間的走路或過度使用後而導致骨板發
生疲勞破壞的情形,則患者將必須再次接受手術,導致痊癒時間的延遲。
本研究主要可以分為兩個部分,第一個是探討骨板設計之好壞,其又可由
兩個面向來判斷,分別是 ANSYS 有限元素模擬以及生物力學實驗測試;第二
部分則是探討骨螺絲工作長度對骨板應力之影響,此部分僅有生物力學實驗測
試。本研究以不同之骨折位置來探討骨板設計之優劣,並在不同骨折位置搭配
上不同工作長度之螺絲打法來探討其對所對應的應力大小。
透過有限元素分析結果顯示,應力集中在螺絲洞上緣,且多數模型最大應
力皆在骨折切口處,且研究發現骨板最弱處位在骨板最薄的位置。在機械實驗
方面,較薄的骨板確實受到較大的應力,但位在骨幹中段的骨板應力卻是最大
的。影響此結果的因素是由於位在骨幹中段之骨板有較長的力臂且其又位於股
骨解剖學上前彎之中點,故受力最大。在工作長度上,位置較低之骨折模型給
予較長的工作長度有助於應力之降低,反之則不然,此現象可歸咎於骨板受力
狀態的改變。


Femurs are the thickest bones in human bodies. When people stand and move,
our femurs suffer not only axial load but also the bending load because of their
anatomical shapes and the muscles that pulling around. Nowadays locking plates are
the most popular treatments for the destruction of a femur. After the occurrence of the
bone fracture, the main support of the body weight when the patients stand and walk
all relies on the plate at the early stage of recovery. However if there is any
shortcoming of the plate design or any lack knowledge of the usage of the plates, the
plates will be broken under a fatigue load after frequently walking or excessively
using. This may result in failure of the treatment and another operation will be needed
once again.
There are two parts in this study. The first one is about the weak point of a plate.
We use finite element analysis to infer the weakest part of a plate and then we validate
the result by biomechanical tests. In the second part, we investigate the effect of the
different screw working length only by biomechanical tests.
From the result of finite element analysis, the stress concentration is on the
screw-hole edges and most of the maximum stress are near the fracture gap. It finds
out that the weak point of the plate is the screw-hole edges at the thinnest part of the
plate. In mechanical tests, although there is a great stress at the thinnest part of the
plate, the maximum stress is at the screw-hole near the middle diaphysis. This is a
result of a larger lever arm and the inferior bending of the bone. In aspect of the
working length, an longer working length has a good effect at the low fracture model,
but goes worse at a higher fracture. This comes to a result of a transform of loading.

中文摘要 I ABSTRACT II 誌謝 III 圖目錄索引 VI 表目錄索引 IX 第一章 緒論 - 骨板設計優劣分析(Weak Point) 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 第二章 研究方法 4 2.1 研究流程圖 4 2.2 A Plus 股骨遠端外側鎖定式骨板與股骨基本幾何參數 5 2.2.1 A Plus 股骨遠端外側鎖定式骨板基本幾何參數 5 2.2.2 股骨基本幾何參數 6 2.3 有限元素分析 6 2.3.1 模型建立 7 2.3.2 材料設定與網格化 8 2.3.3 邊界條件設定與求解 9 2.3.4 後處理與收斂性分析 10 2.4 機械測試 11 2.4.1 機械測試模型製作 11 2.4.2 機械測試上下治具設計 13 2.4.3 機械測試方法 14 2.5 機械測試資料整理 15 第三章 結果 16 3.1 有限元素分析結果 16 3.2 機械測試結果 18 第四章 討論 28 4.1 結果討論 28 4.2 研究限制 30 4.3 未來展望 30 第五章 緒論 - 工作長度(Working Length)影響 31 5.1 研究動機與目的 31 5.2 文獻回顧 32 第六章 研究方法 34 6.1 研究流程 34 6.2 機械測試 34 6.2.1 機械測試模型製作 35 6.2.2 機械測試方法 42 第七章 結果 43 7.1 機械測試 43 第八章 討論 103 8.1 結果討論 103 8.2 研究限制 107 第九章 結論與未來展望 108 9.1 結論 108 9.2 未來展望 109 參考文獻 110

1. Arnone JC, El-Gizawy AS, Crist BD, Della Rocca GJ, Ward CV. Computer-aided engineering approach for parametric investigation of locked plating systems design. Journal of Medical Devices 2013;7:021001.
2. Kanchanomai C, Muanjan P, Phiphobmongkol V. Stiffness and endurance of a locking compression plate fixed on fractured femur. Journal of applied biomechanics 2010;26:10-6.
3. Smith WR, Stahel PF, Ziran BH, Anglen JO. Locking plates: tips and tricks. JBJS 2007;89:2297-307.
4. Sommer C, Babst R, Müller M, Hanson B. Locking Compression Plate Loosening and Plate Breakage. Journal of Orthopaedic Trauma 2004;18:571-7.
5. Hak DJ, Toker S, Yi C, Toreson J. The influence of fracture fixation biomechanics on fracture healing. Orthopedics 2010;33:752-5.
6. Hoffmann MF, Jones CB, Sietsema DL, Koenig SJ, Tornetta P, 3rd. Outcome of periprosthetic distal femoral fractures following knee arthroplasty. Injury 2012;43:1084-9.
7. Strauss EJ, Schwarzkopf R, Kummer F, Egol KA. The Current Status of Locked Plating: The Good, the Bad, and the Ugly. Journal of Orthopaedic Trauma 2008;22:479-86.
8. Yeap EJ, Deepak AS. Failure of Distal Femoral Locking Plate: Case Report.
9. Shih K-S, Hsu C-C, Hsu T-P, Hou S-M, Liaw C-K. Biomechanical analyses of static and dynamic fixation techniques of retrograde interlocking femoral nailing using nonlinear finite element methods. Computer methods and programs in biomedicine 2014;113:456-64.
10. Papini M, Zdero R, Schemitsch E, Zalzal P. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Journal of biomechanical engineering 2007;129:12-9.
11. Amalraju D, Dawood AS. Mechanical strength evaluation analysis of stainless steel and titanium locking plate for femur bone fracture. IRACST–Engineering Science and Technology: An International Journal (ESTIJ), ISSN 2012:2250-3498.
12. Lee C-H, Shih K-S, Hsu C-C, Cho T. Simulation-based particle swarm optimization and mechanical validation of screw position and number for the fixation stability of a femoral locking compression plate. Medical engineering & physics 2014;36:57-64.
13. Briffa N, Karthickeyan R, Jacob J, Khaleel A. Comminuted supracondylar femoral fractures: a biomechanical analysis comparing the stability of medial versus lateral plating in axial loading. Strategies in Trauma and Limb Reconstruction 2016;11:187-91.
14. Viceconti M, Casali M, Massari B, Cristofolini L, Bassini S, Toni A. The ‘standardized femur program’proposal for a reference geometry to be used for the creation of finite element models of the femur. Journal of biomechanics 1996;29:1241.
15. Huang S-C, Lin C-C, Lin J. Increasing nail-cortical contact to increase fixation stability and decrease implant strain in antegrade locked nailing of distal femoral fractures: a biomechanical study. Journal of Trauma and Acute Care Surgery 2009;66:436-42.
16. Lin J, Lin S-J, Chen P-Q, Yang S-H. Stress analysis of the distal locking screws for femoral interlocking nailing. Journal of Orthopaedic Research 2001;19:57-63.
17. Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury 2003;34:63-76.
18. Giordano V, Paes RP, de-Queiroz GB, Lira JCJ, Belangero WD, Pires RES, Labronici PJ. What is the ideal working length for bridge plating osteosynthesis of a femoral shaft fracture? A multinational online survey evaluation. Rev Col Bras Cir 2017;44:328-39.
19. Hak DJ, Althausen P, Hazelwood SJ. Locked plate fixation of osteoporotic humeral shaft fractures: are two locking screws per segment enough? Journal of orthopaedic trauma 2010;24:207-11.
20. Harvin WH, Oladeji LO, Della Rocca GJ, Murtha YM, Volgas DA, Stannard JP, Crist BD. Working length and proximal screw constructs in plate osteosynthesis of distal femur fractures. Injury 2017;48:2597-601.
21. Pletka JD, Marsland D, Belkoff SM, Mears SC, Kates SL. Biomechanical comparison of 2 different locking plate fixation methods in vancouver b1 periprosthetic femur fractures. Geriatr Orthop Surg Rehabil 2011;2:51-5.
22. Kaman MO, Celik N, Karakuzu S. Numerical Stress Analysis of the Plates Used to Treat the Tibia Bone Fracture. Journal of Applied Mathematics and Physics 2014;02:304-9.
23. Schwartz BE, Amirouche FM, Choi KW, Mejia A, Gonzalez M, Seiler JR. A finite element model of locked plating in femoral shaft fractures. Open Journal of Orthopedics 2014;4:104.
24. Sunada EE, Ejnisman L, Leal RD, Pailo AF, Malavolta EA, Sakaki MH, Pereira CAM, Zumiotti AV, Sato JR. Biomechanical study of the osteosynthesis stiffness with bridging plates in cadaveric tibial models. Acta Ortopédica Brasileira 2010;18:66-70.
25. Stoffel K, Dieter U, Stachowiak G, Gächter A, Kuster MS. Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled? Injury 2003;34:B11-9.
26. Chen G, Schmutz B, Wullschleger M, Pearcy MJ, Schuetz MA. Computational investigations of mechanical failures of internal plate fixation. Proc Inst Mech Eng H 2010;224:119-26.
27. Hoffmeier KL, Hofmann GO, Muckley T. Choosing a proper working length can improve the lifespan of locked plates. A biomechanical study. Clin Biomech (Bristol, Avon) 2011;26:405-9.
28. Chao P, Conrad BP, Lewis DD, Horodyski M, Pozzi A. Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate. BMC veterinary research 2013;9.
29. McLachlin S, Kreder H, Ng M, Jenkinson R, Whyne C, Larouche J. Proximal Screw Configuration Alters Peak Plate Strain Without Changing Construct Stiffness in Comminuted Supracondylar Femur Fractures. J Orthop Trauma 2017;31:e418-e24.

無法下載圖示 全文公開日期 2024/01/04 (校內網路)
全文公開日期 2029/01/04 (校外網路)
全文公開日期 2029/01/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE