簡易檢索 / 詳目顯示

研究生: 角鎮佑
Chen-yu Chueh
論文名稱: 以應力為基之迭代式拓樸設計方法
Stress-Based Iterative Topology Design Method
指導教授: 林其禹
Chyi-yeu Lin
口試委員: 李維楨
Wei-chen Lee
史建中
Chien-jong Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 79
中文關鍵詞: 拓樸最佳化拓樸設計方法
外文關鍵詞: Topology Optimization, Topology Design Method
相關次數: 點閱:287下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出以應力為基之迭代式拓樸設計方法(SITD),改善BESO與Fully stressed兩種方法迭代次數過多之缺點,增加可以設定應力限制條件之功能,來得到一個簡單快速可以求解得符合安全性之結構拓樸。本文亦提出填補元素策略,當有元素超過容許應力時,以增加周圍元素方式減輕超過容許應力元素之應力值,使得可以繼續在整體結構中減少元素之個數。本文中包含五個設計實例,分別與AVC與BESO兩種拓樸最佳化方法比較,從最終設計結果之最大應力值、剩餘元素個數與迭代次數等參數可看出本文提出之應力為基之迭代式拓樸設計方法之優點。


    This research proposes an efficient stress-based iterative topology design method (SITD) that requires less computational cost than the fully stressed method and the BESO method while provides a unique strength - the resultant structural configuration will automatically meet the user-defined maximum stress limit. The proposed iterative method gradually removes lower stressed elements until the maximum stress reaches the preset value. After the structure reaches the preset maximum stress value, a local reinforcement strategy can then be used to strengthen the region with the current maximum stress by adding elements. The reinforcement enables more elements in other regions can be removed so as to further reducing weight while continually sustaining the maximum stress under the limit. Five illustrative design examples are solved by the proposed stress-based iterative method, the adaptive volume constraint algorithm for stress-limit based topology optimization (AVC), and the BESO method. The results confirm the advantages of the proposed methods over the compared algorithms.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖表目錄 Ⅵ 符號說明 Ⅷ 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究動機 3 1.4 本文內容綱要 4 第二章 結構設計最佳化 6 2.1 尺寸最佳化 6 2.2 形狀最佳化 6 2.3 拓樸最佳化 7 2.4 最佳化方法 8 2.4.1 連續線性規劃法 8 2.4.2 最佳材料分配方法 10 第三章 拓樸最佳化方法 13 3.1 進化式結構最佳化(ESO) 13 3.2 雙方向之進化式結構最佳化(BESO) 13 3.3 全應力方法(Fully stressed) 15 3.4 可調整體積限制條件之拓樸最佳化(AVC) 15 3.5 以應力為基之迭代式拓樸設計方法(SITD) 17 3.5.1 線性與非線性減少元素個數 17 3.5.2 抑制棋盤狀模型 19 3.6 填補元素策略 21 第四章 以應力為基之迭代式拓樸設計方法執行範例 24 4.1 二維懸臂樑A 24 4.1.1容許應力值為10,000psi 24 4.1.2容許應力值為15,000psi 27 4.2 二維懸臂樑B 28 4.2.1容許應力值為10,000psi 29 4.2.2容許應力值為15,000psi 31 4.3 三維懸臂樑A 33 4.3.1容許應力值為100MPa 33 4.3.2容許應力值為150MPa 36 4.4 三維懸臂樑B 38 4.4.1容許應力值為100MPa 38 4.4.2容許應力值為150MPa 40 4.5 三維四負荷四端固定樑 42 4.5.1容許應力值為100MPa 43 4.5.2容許應力值為150MPa 44 第五章 結論與建議 48 5.1 結論 48 5.2 建議 48 參考文獻 50 附錄 53 作者簡介 79

    Baumgartner, A., Harzheim, L. and Mattheck, C. (1992): SKO: the Biological Way to Find Optimum Structure Topology, Int. J. Fatigue, Vol. 14, pp. 387-393.

    Bendse, M. P., and Haber, R. B. (1993): The Michell Layout Problem as a Low Volume Fraction Limit of the Perforated Plate Topology Optimization Problem: an Asymptotic Study, Structural Optimization, Vol. 6, pp. 263-267.

    Bendse, M. P., and Kikuchi, N. (1988): Generating Optimal Topologies in Structural Design Using a Homogenization Method, Computer Method in Applied Mechanics and Engineering, Vol. 71, pp. 197-224.

    Chen, T. Y., Wang, B. P. and Chen, C. H. (1995): Minimum Compliance Design Using Topology Approach, 中國機械工程學會第十二屆學術研討會論文集, 嘉義縣, pp. 841-848.

    Duysinx, P. and Bendse, M. P. (1998): Topology Optimization of Continuum Structures with Local Stress Constraints, Int. J. Numer. Methods Eng., Vol. 43, pp. 1453-1478

    Haftka, R.T., and Grandhi, R. V. (1986): Structural Shape Optimization – A Survey, Computer Methods in Applied Mechanics and Engineering, Vol. 57, pp. 91-106.

    Hinton, E., and Sienz, J. (1995): Fully Stressed Topological Design of Structures Using an Evolutionary Procedure, Engineering Computations, Vol. 12, pp. 229-244.

    Jacobsen, J. B., Olhoff, N., and Rnholt, E. (1998): Generalized Shape Optimization of Three-dimensional Structures using Materials with Optimum Microstructures, Mechanics of Materials, Vol. 28, pp. 207-225.

    Kincaid, R. K., and Padula, S. L. (1990): Minimizing Distortion and Internal Forces in Truss Structure by Simulated Annealing, Proceedings of the 30th AIAA/ASME/ASCE/ASHS/ASC Structures, Structural Material and Dynamics Conference, pp. 327-333.

    Li, Q., Steven, G. P. and Xie, Y. M. (1992): A Simple Checkerboard Suppression for evolutionary structural optimization, Engineering Optimization, Vol. 19, pp. 309-327.
    Lin, C. Y., and Hajela, P. (1992): Genetic Algorithms in Optimization Problems with Discrete and Integer Design Variables, Engineering Optimization, Vol. 19, pp. 309-327.

    Lin, C. Y., and Hsu, F. M. (2004): Adaptive Volume Constraint Algorithm for Stress-Limit Based Topology Optimization, submitted to Computer Method in Applied Mechanics and Engineering.

    Lin, C. Y., and Jiang, J. F. (1997): Nonconvex and Discrete Optimal Design Using Multiple State Simulated Annealing, Structural Optimization, Vol. 14, pp. 121-128.

    Michell, A. G. M. (1904): The Limits of Economy of Material in Framed Structures, Philosophy Magazine, Series 6, Vol. 8, pp. 589-597.

    Mlejenk, H. P. (1992): Some Aspects of the Genesis of Structures, Structural Optimization, Vol. 5, pp. 64-69.

    Mlejnek, H. P., and Schirrmacher, R. (1993): An Engineer’s Approach to Optimal Material Distribution and Shape Finding, Computer Method in Applied Mechanics and Engineering, Vol. 106, pp. 1-26.

    Payten, W. M. and Law, M. (1998): Generalized Shape Optimization using Stress Constraints under Multiple Load Cases, Structural Optimization, Vol. 15, pp. 269-274.

    Querin, O. M., Steven, G.. P. and Xie, Y. M. (2000a): Evolutionary Structural Optimisation using an Additive Algorithm, Finite elements in analysis and design, Vol. 34, pp. 291-308.

    Querin, O. M., Yong, V., Steven, G.. P. and Xie, Y. M. (2000b): Computational Efficiency and Validation of Bi-directional Evolutionary Structural Optimisation, Computer Method in Applied Mechanics and Engineering, Vol. 189, pp. 559-573.

    Schmit, L. A. (1960): Structural Design by Systematic Synthesis, Proceedings of the 2nd Conference on Electronic Computation, ASCE, New York, pp. 105-122.

    Suzuki, K., and Kikuchi, N. (1991): A Homogenization Method for Shape and Topology Optimization, Computer Method in Applied Mechanics and Engineering, Vol. 93, pp. 291-318.

    Thomsen, J. (1992): Topology Optimization of Structures Composed of One or Two Materials, Structural Optimization, Vol. 5, pp. 108-115.

    Vancza, J., and Markus, A. (1991): Genetic Algorithms in Process Planning, Proceedings of the 1st Workshop of the Intelligent Manufacturing Systems, pp. 181-194.

    Vanderplaats, G. N. (1993): Numerical Optimization Techniques for Engineering Design, McGraw-Hill.

    Xie, Y. M. and Steven, G.. P. (1993): A Simple Evolutionary Procedure for Structural Optimization, Computers and Structures, Vol. 49, No. 5, pp. 885-896.

    Yang, D., Sui, Y., Liu, Z. and Sum, H. (2000): Topology Optimization Design of Continuum Structures under Stress and Displacement Constraints, Applied Mathematics and Mechanics, Vol. 21, pp. 19-26.

    Yang, R. J., and Chen, C. J. (1996): Stress-Based Topology Optimization, Structural Optimization, Vol. 12, pp. 98-105.

    徐業良 (1995): 工程最佳化設計, 國立編譯館.

    QR CODE