簡易檢索 / 詳目顯示

研究生: 郭也群
Yeh-Chun Kuo
論文名稱: FeZSM-5的改質對此觸媒將苯氧化為酚活性的影響
Effects of Modification of FeZSM-5 on the Activity of the Catalyst in Oxidizing Benzene to Phenol
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 蕭敬業
Ching-Yeh Shiau
萬本儒
Ben-Zu Wan
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 笑氣直接氧化FeZSM-5水蒸氣處理碳管
外文關鍵詞: benzene, phenol, nitrous oxide, direct oxidation, FeZSM-5, steam, carbon nanotubes
相關次數: 點閱:159下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以奈米級FeZSM-5及一系列改質FeZSM-5進行苯的直接氧化生成酚的研究,使用的氧化劑為笑氣,觸媒以四方面進行改質:添加銅、水蒸氣處理、水蒸氣加鹽酸處理、合成時添加奈米碳管。
    本研究中所合成的各觸媒以不同儀器鑑定其性質,包括以XRD鑑定觸媒的結晶;以FESEM觀察FeZSM-5外型、以氮氣吸附分析觸媒表面積及微孔體積;以ICP-AES測量觸媒組成;以NH3-TPD了解觸媒酸性。
    觸媒的活性在常壓300~550°C下利用流動反應器量測,測量時觸媒使用量固定為0.3 g,總進料量固定為396 mmol/min,以反應溫度為450°C時最佳,溫度過低酚產率不足,溫度過高觸媒易失活;苯/笑氣進料莫耳比增加時,酚的選擇率亦增,苯/笑氣進料莫耳比為3.56時,酚的選擇率即達最大值(93%);新合成的FeZSM-5觸媒需在線上活化80 min後方呈穩定,觸媒在之後4 h測試中皆能維持活性不變。
    實驗之後得知,於FeZSM-5中以添加少量銅(0.2 wt%)有助於提升觸媒產酚的活性,但添加量過多(≧1 wt%)反使酚的產率減少。經過水蒸氣、水蒸氣與鹽酸處理後,FeZSM-5中有部份鋁和鐵被移除,使得觸媒總酸位減少,強酸比例增加,處理後的FeZSM-5在300~500°C的反應溫度間呈現較低的活性,選擇率則不受影響;在500~550°C間水蒸氣併鹽酸處理的FeZSM-5有最高的活性。於合成FeZSM-5時添加奈米碳管,可改變晶體粒徑分佈,部分晶體並有穿孔情形,但合成的FeZSM-5純度較差,致使產酚活性較未使用碳管差,但若扣除純度因素後,使用碳管合成之FeZSM-5則活性較佳。


    This study used a nanosized FeZSM-5 and a series of modified FeZSM-5 to to produce phenol by direct oxidation of benzene. Nitrous oxide was the oxidant. FeZSM-5 was modified in four ways: incorporation of copper by impregnation, treating with steam, treating with steam and acid, and adding carbon nanotubes in the synthesis.
    The catalysts synthesized for this study were characterized by XRD for the crystalline structures, by FESEM for the morphology, by nitrogen adsorption for the BET surface and micropore volume, by ICP-AES for the composition, and by NH3-TPR for knowing the acid strength distribution..
    The activities of the catalysts were measured at 1 atm and 300-550oC, using a continuous flow micro-reactor loaded with 0.3 g catalyst. The total feed rate to the reactor was maintained at 396 mmol/min. The result showed that the optimum reaction temperature was 450oC. Carrying out the reaction at a temperature lower than 450oC would only give insufficient phenol yield. A temperature higher than 450oC would cause excessive catalyst deactivation, hence lower the yield of phenol. The selectivity to phenol increased with an increase in the ratio of benzene/N2O. A maximum selectivity of 93% was obtained at a ratio of 3.56. An activation period of 80 min was found for a newly synthesized FeZSM-5. The catalyst was stable after the activation for a 4 hours test run.
    An incorporation of small amount of copper ( < 0.2 wt %) could enhance the activity of the FeZSM-5. But excess copper ( > 1 wt %) resulted in a lower activity due possibly to the clog of the pores by the copper. Steam treatment as well as steam plus acid treatments could both partially remove the aluminum and iron in FeZSM-5. The removal resulted in a decrease in the number of acid sites and an increase in the strength of the sites. As a consequence, the activity of the treated FeZSM-5, at least in 300-500oC, was reduced. The selectivity of CO, however, was not altered. The steam and acid treated FeZSM-5, due possibly to its higher thermal stability, exhibited a higher activity than the untreated counter part at a reaction temperature between 500-550oC. Adding carbon nanotubes in synthesizing could change the size of the FeZSM-5 crystals. Some of the crystals were found to be penetrated by the tubes. But the content of FeZSM-5 in the synthesized product was lower than that prepared without the tubes. As a consequence, the activity of the catalyst synthesized with the tubes was also lower. However, if purity factor was removed and the comparison was made on the same amount of pure FeZSM-5 basis, the FeZSM-5 prepared with the tubes showed higher activity than that synthesized without the tubes.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 第二章 文獻回顧 2 2.1 酚 2 2.1.1酚的性質 2 2.1.2酚的應用 3 2.1.3酚的合成方法 4 2.2苯直接氧化製造酚 9 2.2.1以O2為氧化劑 9 2.2.2以H2O2為氧化劑 9 2.3.3以HNO3為氧化劑 9 2.3.4以H2O為氧化劑 10 2.3.5以N2O為氧化劑 10 2.3沸石 11 2.3.1 沸石的介紹 11 2.3.2 沸石的合成 13 2.3.3 沸石的應用 13 2.3.4 沸石的酸性 18 2.3.5 沸石性質的鑑定 20 2.3.6 ZSM-5 21 2.3.7 沸石的改質方法 25 第三章 實驗 28 3.1 實驗藥品、氣體與儀器設備 28 3.1.1實驗藥品 28 3.1.2實驗氣體 29 3.1.3實驗器材、儀器設備 29 3.2 FeZSM-5觸媒的製備 31 3.2.1 NaFeZSM-5的合成 31 3.2.2離子交換 31 3.3 FeZSM-5觸媒改質 32 3.3.1含浸Cu的FeZSM-5觸媒 32 3.3.2水蒸汽處理FeZSM-5 觸媒 32 3.3.3水蒸汽處理再經酸處理FeZSM-5觸媒 33 3.3.4 CNTsFeZSM-5觸媒 33 3.3.4.1奈米碳管的純化 33 3.3.4.2 FeZSM-5(CNTs)觸媒的合成 34 3.4笑氣一步氧化苯製酚的反應 35 3.4.1實驗裝置與操作 35 3.4.2實驗結果分析方法 40 3.5 觸媒鑑定 42 3.5.1 X-光繞射光譜分析 42 3.5.2場發射掃描式電子顯微鏡(FESEM) 44 3.5.3氣體吸附儀 46 3.5.4程式升溫脫附(TPD) 49 3.5.5感應耦合電漿原子發射光譜法(ICP-AES) 51 第四章 結果與討論 54 4.1 觸媒的組成鑑定 54 4.1.1 X光粉末繞射(XRD)分析 54 4.1.2感應耦合電漿原子發射光譜法(ICP-AES)分析 56 4.2觸媒粒徑大小、孔洞分布 57 4.2.1奈米碳管穿透FeZSM-5觸媒 57 4.2.3微孔體積cm3/g 60 4.3觸媒酸位鑑定 62 4.3.1氨氣程式升溫脫附(NH3-TPD)分析 62 4.4笑氣氧化苯製酚反應 64 4.4.1笑氣一步氧化苯製酚反應機構的討論 64 4.4.2比較FeZSM-5與ZSM-5產酚之活性 65 4.4.3進料組成比例對酚產率的影響 67 4.4.4 FeZSM-5添加銅量的影響 69 4.4.5 FeZSM-5經水蒸氣與酸處理對產酚活性之影響 71 4.4.6 FeZSM-5的穩定性 74 4.4.7合成FeZSM-5添加奈米碳管成FeZSM-5之影響 75 第五章 結論 77 參考文獻 79

    Barrer, R. M., (1962), "Preparation of Mordeinte Type Zeolite", J. Chem. Soc., 2158
    Burch, R. & Howitt, C. (1992), "Direct partial oxidation of benzene to phenol on zeolite catalysts", Applied Catalysis A: General, vol. 86, no. 2, pp. 139-146.
    Fajula, F. & Lami E. B. (1994), "Process for Dealuminization of the Synthetic Zeolite", U.S. Pat. 5,310,534
    Hensen, E.J.M., Zhu, Q. & Van Santen, R.A. (2003), "Extraframework Fe-Al-O species occluded in MFI zeolite as the active species in the oxidation of benzene to phenol with nitrous oxide", Journal of Catalysis, vol. 220, no. 2, pp. 260-264.
    Iwamoto, M., Hirata, J.-., Matsukami, K. & Kagawa, S. (1983), "Catalytic oxidation by oxide radical ions. 1. One-step hydroxylation of benzene to phenol over group 5 and 6 oxides supported on silica gel", Journal of Physical Chemistry, vol. 87, no. 6, pp. 903-905.
    Ivanov, A.A., Chernyavsky, V.S., Gross, M.J., Kharitonov, A.S., Uriarte, A.K. & Panov, G.I. (2003), "Kinetics of benzene to phenol oxidation over Fe-ZSM-5 catalyst", Applied Catalysis A: General, vol. 249, no. 2, pp. 327-343
    Jia, J., Pillai, K.S. & Sachtler, W.M.H. (2004), "One-step oxidation of benzene to phenol with nitrous oxide over Fe/MFI catalysts", Journal of Catalysis, vol. 221, no. 1, pp. 119-126.
    Kharitonov A.S., Panov G.I., Sheveleva G.I., & Pirutko L.V. (2000). "Catalysts for production of phenol and its derivatives", U.S. Pat.Re.36,856.
    McGhee W.D. & Patrick P.B. (1999). "Benzene hydroxylation catalyst stability by caid treatment", U.S. Pat. 5874,647.
    Ono, Y., Fujii, Y., Wakita, H., Kimura, K. & Inui, T. (1998), "Catalytic combustion of odors in domestic spaces on ion-exchanged zeolites", Applied Catalysis B: Environmental, vol. 16, no. 3, pp. 227-233.
    Panov, G.I., Kharitonov, A.S. & Sobolev, V.I. (1993), "Oxidative hydroxylation using dinitrogen monoxide: A possible route for organic synthesis over zeolites", Applied Catalysis A: General, vol. 98, no. 1, pp. 1-20.
    Reitzmann, A., Klemm, E. & Emig, G. (2002), "Kinetics of the hydroxylation of benzene with N2O on modified ZSM-5 zeolites", Chemical Engineering Journal, vol. 90, no. 1-2, pp. 149-164.
    Schmidt, I., Boisen, A., Gustavsson, E., Ståhl, K., Pehrson, S., Dahl, S., Carlsson, A. & Jacobsen, C.J.H. (2001), "Carbon nanotube templated growth of mesoporous zeolite single crystals", Chemistry of Materials, vol. 13, no. 12, pp. 4416-4418.
    Selli, E., Rossetti, I., Meloni, D., Sini, F. & Forni, L. (2004), "Effect of surface acidity on the behaviour of Fe-MFI catalysts for benzene hydroxylation to phenol", Applied Catalysis A: General, vol. 262, no. 2, pp. 131-136.

    Zhai, P., Wang, L., Liu, C. & Zhang, S. (2005), "Coking and deactivation of catalyst inhibited by silanization modification in oxidation of benzene to phenol with nitrous oxide", Chinese Journal of Chemical Engineering, vol. 13, no. 1, pp. 37-42.
    王熒光、桂建舟、張曉彤、孫兆林. (2005), "納米ZSM-5分子的合成與表徵",光譜實驗室,第22卷,第2期,pp. 225-229.
    王健雄、陳小華、彭景翠、張振華. (2001), "碳納米管的非破壞性純化研究",新型碳材料,第16卷,第3期,pp. 37-41.
    王國鎮、楊思明. (1994), "沸石觸媒之特性與應用",化工技術,第2卷,第3期,pp. 44-52.
    紀炅廷. (2005), "以氧化亞氮氧化法制備酚之研究",國立台灣科技大學化工系碩士論文.
    孫兆林、王熒光、桂建舟、張曉彤. (2005), "納米ZSM-5分子篩受空間合成",石油化工高等學校學報,第18卷,第3期,pp. 15-19.
    楊盛強. (2006), "奈米級FeZSM-5觸媒及其酚合成活性研究",國立台灣科技大學化工系碩士論文.
    霍丕沐、王立秋、劉長厚、張元禮. (2005), "HZSM-5分子篩催化劑在催化氧化合成苯酚反應中的積碳和失活行為",催化學報,第26卷,第1期,pp. 10-14.
    藍忠、王立秋、張守辰、劉長厚. (2002), "N2O直接催化氧化苯製酚研究進展",化學進展,第21卷,第9期,pp. 621-625.

    QR CODE