簡易檢索 / 詳目顯示

研究生: 程元鴻
Yuan-Hong Cheng
論文名稱: 應用於基地台之單級雙向升壓型直流-交流轉換器控制策略及研製
Control Strategy and Implementation of Single-Stage Bidirectional Boost DC-AC Converter for Telecom Base Station
指導教授: 林長華
Chang-Hua Lin
口試委員: 陳堃峯
Kun-Feng Chen
白凱仁
Kai-Jun Pai
劉添華
Tian-Hua Liu
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 單級差分升壓型直流-交流轉換器儲能系統正弦脈波寬度調變
外文關鍵詞: single-stage differential boost inverter, energy storage system, SPWM
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製應用於基地台之單級雙向直流-交流轉換器,結合電池儲能系統可作為基地台之備用電源。所實現系統之主電路採用單級差分升壓型直流-交流轉換器,可將電池模組之低電壓,透過單級轉換器升壓至所需之交流電源,以取代儲能系統常見之兩級轉換器,藉此減少元件使用數量,提高功率密度。其次,傳統的單級差分升壓型直流-交流轉換器主要是應用於太陽能產業,目前僅有單向控制之相關應用,本文透過電路模式分析,推導出此架構之雙向控制法則。再者,為了降低此架構於直流轉交流之回授控制複雜度,提出修正型正弦脈波寬度調變(modified sinusoidal pulse width modulation, Modified SPWM)控制法,根據推導之數學模式,建立修正型SPWM控制訊號,藉此降低轉換器責任週期、減輕元件應力、改善輸出交流波形,以及降低總諧波失真。最後,所提控制策略皆由數位控制器實現,並且搭配RS485通訊界面與Modbus通訊協議,即可與儲能系統之人機界面,或外加的電池管理系統(battery management system, BMS),進行雙方資訊的交換。


    This thesis aims to implement a single-stage bidirectional DC-AC converter, which is combined with battery energy storage system(BESS), to replace backup power of base station. The implemented single-stage differential boost inverter is used as the main circuit to supply power to AC load from a lower voltage battery module. Compared with the common two-stage topology of BESS, which has a two-stage converter and higher voltage battery module array, the single-stage topology can reduce the number of battery cells and components of converter, and also improve the power density. Moreover, because this topology is mainly used in solar applications, which have only been operated in DC-AC mode. In this thesis, the bidirectional control strategy is proposed by circuit derivation. In addition, in order to reduce the control complexity under DC-AC mode, a modified SPWM control used in single-stage differential boost inverter is proposed, which can reduce the duty ratio and the stress on the components, and also improve the AC voltage output waveform to reduce the THD. Finally, the proposed control strategies and Modbus protocol are implemented by the digital controller and RS485 interface, so that information can be exchanged among the bidirectional energy storage system, the battery manage system and the human machine interface.

    摘要.............................................I Abstract.........................................II 誌謝.............................................III 目錄.............................................IV 圖目錄...........................................VIII 表目錄...........................................XII 第一章 緒論.......................................1 1.1 研究背景......................................1 1.2 文獻探討......................................2 1.3 論文架構......................................7 第二章 基地台雙向儲能系統之分析.....................8 2.1 基地台電源簡介.................................8 2.2 基地台雙向儲能系統.............................9 2.3 傳統正弦脈波寬度調變控制.......................13 2.4 雙向儲能系統之架構.............................16 2.4.1 雙向轉換器工作模式...........................18 2.4.2 電池放電模式之轉換器動作分析..................19 2.4.3 電池充電模式之轉換器動作分析..................28 2.5 適用於升壓型直流-交流轉換器之SPWM修正策略........38 2.6 總諧波失真分析.................................43 2.6.1 使用傳統SPWM控制法之諧波失真分析..............46 2.6.2 所提修正型SPWM控制法之諧波失真分析.............48 第三章 系統之控制策略與通訊界面......................50 3.1 數位控制之簡介.................................50 3.2 數位控制器dsPIC33FJ64GS606介紹.................51 3.3 數位控制器與週邊電路之整合......................53 3.4 數位SPWM控制..................................55 3.5 雙向儲能系統之充放電策略........................58 3.5.1 電池充電策略之流程說明........................61 3.5.2 電池放電策略之流程說明........................63 3.5.3 系統保護功能.................................65 3.6 通訊界面之設計.................................66 3.6.1 通用非同步收發傳輸器.........................67 3.6.2 Modbus通訊協定..............................68 3.6.3 系統之人機界面...............................72 第四章 系統規格及設計考量...........................74 4.1 雙向儲能系統設計與考量..........................74 4.2 電池規格挑選...................................75 4.3 電容設計與挑選.................................77 4.4 電感設計與挑選.................................77 4.5 主開關之挑選...................................82 4.6 回授設計.......................................82 4.6.1 交流側電壓之回授設計..........................82 4.6.2 電池與直流側電壓之回授設計.....................84 4.6.3 電池電流之回授設計............................86 4.6.4 頻率偵測之電路設計............................87 4.7 驅動電路設計...................................88 第五章 電路模擬與實測結果...........................90 5.1 系統規格與測試條件..............................90 5.2 雙向儲能管理系統之實測...........................92 5.2.1 儲能管理系統於電池放電模式之實測................93 5.2.2 儲能管理系統於電池充電模式之實測................95 5.3 電池放電模式之模擬與實測.........................98 5.4 電池充電模式之模擬與實測.........................103 5.5 傳統與修正型控制法之模擬與實測比較................105 第六章 結論與未來展望................................110 6.1 結論............................................110 6.2 未來展望........................................111 參考文獻............................................112

    [1]V. Chamola, V. Hassija, V. Gupta, and M. Guizani, “A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact,” IEEE Access, vol. 8, pp. 90225–90265, 2020.
    [2]"Ericsson Mobility Report," November 2020.
    [3]T. Li, M. Zhang, Y. Li, E. Lagerspetz, S. Tarkoma, and P. Hui, “The Impact of Covid-19 on Smartphone Usage,” IEEE Internet Things J., pp. 1–1, 2021.
    [4]洪英章, "透過無線通訊技術的演進,來探討 5G 將所帶來的產業發展," 2019.
    [5]陳怡如,“攜手臺廠打造5G小基站生態系,” 工業技術與資訊月刊, 3 2020.
    [6]G. Soos, D. Ficzere, and P. Varga, “Towards Traffic Identification and Modeling for 5G Application Use-Cases,” Electronics, vol. 9, no. 4, p. 640, Apr. 2020.
    [7]華為技術有限公司, “5G電源白皮書,” 2019.
    [8]W. Huang, T. Khan & T. Paul Chow, "Comparison of MOS capacitors on n- and p-type GaN," Journal of Electronic Materials, p. 726–732, 2006.
    [9]Digitimes企劃, "5G基地台電源方案 仰賴新材料及新技術," 2020. [Online].Available: https://www.digitimes.com.tw/iot/article.asp?cat=130&id=0000591864_OLQ9PR5U575MXR56Q82RK.
    [10]Y. Choi and H. Kim, “Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost,” Energies, vol. 9, no. 6, p. 462, Jun. 2016.
    [11]S. Liu, X. Wang, and P. X. Liu, “A Stochastic Stability Enhancement Method of Grid-Connected Distributed Energy Storage Systems,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2062–2070, Sep. 2017.
    [12]K.-Y. Lo, Y.-M. Chen, and Y.-R. Chang, “Bidirectional Single-Stage Grid-Connected Inverter for a Battery Energy Storage System,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4581–4590, Jun. 2017.
    [13]X. Li, Z. Li, L. Guo, J. Zhu, Y. Wang, and C. Wang, “Enhanced Dynamic Stability Control for Low-Inertia Hybrid AC/DC Microgrid With Distributed Energy Storage Systems,” IEEE Access, vol. 7, pp. 91234–91242, 2019.
    [14]N. Nguyen, S. K. Oruganti, K. Na, and F. Bien, “An Adaptive Backward Control Battery Equalization System for Serially Connected Lithium-ion Battery Packs,” IEEE Trans. Veh. Technol., vol. 63, no. 8, pp. 3651–3660, Oct. 2014.
    [15]L. Y. Wang, C. Wang, G. Yin, F. Lin, M. P. Polis, C. Zhang and J. Jiang, “Balanced Control Strategies for Interconnected Heterogeneous Battery Systems,” IEEE Trans. Sustain. Energy, vol. 7, no. 1, pp. 189–199, Jan. 2016.
    [16]K. W. See, K. C. Lim, S. Batternally, and N. Zhang, “Charge-Based Self-Equalization for Imbalance Battery Pack in an Energy Storage Management System: Developing a Time-Based Equalization Algorithm,” IEEE Consum. Electron. Mag., vol. 8, no. 2, pp. 16–21, Mar. 2019.
    [17]陳寧賢, "鋰電池模組內外平衡之設計與實現," 國立台灣科技大學電機工程系碩士學位論文, 民國一百零九年七月.
    [18] 李宥霖, "具雙向返馳轉換器之主動式電池平衡系統控制策略," 國立台灣科技大學電機工程系碩士學位論文, 民國一百零九年七月.
    [19]G. Ding, F. Gao, H. Tian, C. Ma, M. Chen, G. He and Y. Liu, “Adaptive DC-Link Voltage Control of Two-Stage Photovoltaic Inverter During Low Voltage Ride-Through Operation,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4182–4194, Jun. 2016.
    [20]L. Zhang, F. Jiang, D. Xu, K. Sun, Y. Hao and T. Zhang, "Two-stage transformerless dual-buck PV grid-connected inverters with high efficiency," Chinese Journal of Electrical Engineering, vol. 4, no. 2, pp. 36-42, 2018.
    [21]F. Zhang, Y. Xie, Y. Hu, G. Chen, and X. Wang, “A Hybrid Boost–Flyback/Flyback Microinverter for Photovoltaic Applications,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 308–318, Jan. 2020.
    [22]T. V. Thang, N. M. Thao, J.-H. Jang, and J.-H. Park, “Analysis and Design of Grid-Connected Photovoltaic Systems With Multiple-Integrated Converters and a Pseudo-DC-Link Inverter,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3377–3386, Jul. 2014.
    [23]D. B. W. Abeywardana, B. Hredzak, and V. G. Agelidis, “A Rule-Based Controller to Mitigate DC-Side Second-Order Harmonic Current in a Single-Phase Boost Inverter,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1665–1679, Feb. 2016.
    [24]S. Huang, F. Tang, Z. Xin, Q. Xiao, and P. C. Loh, “Grid-Current Control of a Differential Boost Inverter With Hidden LCL Filters,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 889–903, Jan. 2019.
    [25]D. B. W. Abeywardana, B. Hredzak, and V. G. Agelidis, “An Input Current Feedback Method to Mitigate the DC-Side Low-Frequency Ripple Current in a Single-Phase Boost Inverter,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4594–4603, Jun. 2016.
    [26]W.-L. Chen, C.-H. Yang, C.-T. Lin, M.-S. Xu, and K.-F. Chen, “Voltage Modulation and Current Control of Boost Inverters for Stand-Alone or Grid-Tied Operation,” IEEE Trans. Power Electron., vol. 35, no. 8, pp. 8726–8736, Aug. 2020.
    [27]K. Jha, S. Mishra, and A. Joshi, “High-Quality Sine Wave Generation Using a Differential Boost Inverter at Higher Operating Frequency,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 373–384, Jan. 2015.
    [28]X. Ge, J. Yang, H. Gharavi, and Y. Sun, “Energy Efficiency Challenges of 5G Small Cell Networks,” IEEE Commun. Mag., vol. 55, no. 5, pp. 184–191, May 2017.
    [29]Albert Ayang, Paul-Salomon Ngohe-Ekam, Bossou Videme and Jean Temga, "Power Consumption: Base Stations of Telecommunication in Sahel Zone of Cameroon: Typology Based on the Power Consumption—Model and Energy Savings," Journal of Energy, 2016.
    [30]Y. Zhang, Y. Xu, Y. Sun, Q. Wu, and K. Yao, “Energy Efficiency of Small Cell Networks: Metrics, Methods and Market,” IEEE Access, vol. 5, pp. 5965–5971, 2017.
    [31]曾國棟, “以數位訊號處理器為基礎之不斷電並聯運轉系統,” 國立中山大學電機工程系碩士學位論文, 民國九十一年六月.
    [32]M. Kwon and S. Choi, “An Electrolytic Capacitorless Bidirectional EV Charger for V2G and V2H Applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6792–6799, Sep. 2017.
    [33]M. Restrepo, J. Morris, M. Kazerani, and C. A. Canizares, “Modeling and Testing of a Bidirectional Smart Charger for Distribution System EV Integration,” IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 152–162, Jan. 2018.
    [34]V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007–1020, Mar. 2016.
    [35]莊育庭, “具雙向功率控制之儲能系統研製,” 國立台灣科技大學電機工程系碩士學位論文, 民國一百零三年七月.
    [36]張瑞騏, “雙向換流器之功因修正模式數位化控制,” 國立中正大學電機工程系碩士學位論文, 民國九十九年七月.
    [37]T. M. Blooming and D. J. Carnovale, "Application of IEEE STD 519-1992 Harmonic Limits," Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference, pp. 1-9, 2006.
    [38]Microchip, "dsPIC33FJ64GS606 datasheet," 16-bit Digital Signal Controllers(up to 64 KB Flash and 9 KB SRAM) with High-Speed PWM, ADC, and Comparators, 2009-2012.
    [39]Microchip, "Section 43. High-Speed PWM," 2007-2011.
    [40]台灣電力股份有限公司, “台灣電力股份有限公司電力調度要點,” 民國一百一十年二月.
    [41]昇陽電池, "LIFEPO4 BATTERY PRODUCT SPEC.," 2020. [Online]. Available: http://www.phoenixbattery.com.tw/service_cell.asp.
    [42]飛磁股份有限公司, “E65/32/27-3C90,” 2016.
    [43]I. Technologies, "IPW60R024P7," 2019.
    [44]Allegro Micro Systems, ACS730, “Fully Integrated, Hall EffectBased Linear Current Sensor,” 2019.
    [45]M. Diallo, “Bootstrap Circuitry Selection for Half Bridge Configurations,” p. 10, 2018.
    [46]“IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE.
    [47]S. Electric, “IEEE_STD_519_1992vs2014”.

    無法下載圖示 全文公開日期 2031/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE