研究生: |
曾養騰 Yang-Tang Tseng |
---|---|
論文名稱: |
以延伸整合型科技接受模式及隱私探討 UID2.0 用戶之行為意圖 Exploring the Behavioral Intentions of UID2.0 Users through UTAUT2 and Privacy Concerns |
指導教授: |
欒斌
Pin Luarn |
口試委員: |
陳正綱
Cheng-Kang Chen 林鴻文 Hong-Wen Lin |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 企業管理系 Department of Business Administration |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 第三方 Cookie 、廣告投放 、精準行銷 、UID2.0 、Cookieless |
外文關鍵詞: | Cookieless, UID2.0, third-party cookie, precision marketing, ad targeting |
相關次數: | 點閱:281 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著隱私權抬頭,用戶對於網路隱私之關注度也提升。為了保護用戶隱私, 歐盟訂定了 GDPR,加州訂定了 CCPA 等法規,這些法規的實施讓整體網路風 氣得到改善,越來越多的網路用戶開始關注網路隱私。由此,一些主流的瀏覽 器,如 Safari 和 Firefox 已經開始限制或禁止第三方 cookie 的使用。這也導致廣 告商和網站經營者需要去尋找替代方案以收集用戶資料,並保持廣告的精準投 放和用戶體驗。在這種情況下,出現了一些新的技術和產品,例如 Google 推出 Privacy Sandbox 及本次研究主題 UID2.0 等,已經被提出和討論,以解決這些問 題。
而這些解決方案的出現,讓保護用戶隱私和廣告行業的發展展生了並存的 可能性,則了解用戶對於替代技術或替代產品的態度,能有效幫助廣告業者在 廣告投放和用戶隱私之間取得平衡。從過往的研究中可以得知,用戶對於隱私 保護和個人資料的關注度不斷提升,並且對於收集和使用其個人資料的廣告商 和網站經營者產生了不信任感。然而,同時也有研究指出,如果替代技術能夠 提供更好的個性化體驗和更有效的廣告投放,用戶可能會對其持開放態度。因 此,本研究將重點探討各個因素對於用戶行為意圖之影響,以提高未來 UID2.0 之使用率和用戶滿意度。
而根據本研究結果顯示,在手機裝置及電腦裝置上,用戶對於影響之因素 基本一致,依影響程度排序為價格價值、享樂動機、績效預期。在本研究中以 隱私作為調節變數,並以平均數作為區分,劃分為高關注及低關注的族群。然 而在本研究中,對於上述三構面,隱私皆未存有調解效果。藉此提出對廣告商 及替代技術開發商之廣告建議。
As privacy concerns have grown, users have become increasingly aware of online privacy. In order to protect user privacy, regulations such as GDPR in Europe and CCPA in California have been enacted, improving the overall online environment. Major browsers like Safari and Firefox have begun to limit or block the use of third- party cookies, leading advertisers and website operators to seek alternative ways to collect user data while maintaining ad targeting and user experience. In this context, new technologies and products have emerged, such as Google's Privacy Sandbox and the topic of this study, UID2.0, which have been proposed and discussed to address these issues.
Understanding users' attitudes towards alternative technologies or products can effectively help advertisers strike a balance between ad targeting and user privacy. Previous research has shown that users' concerns about privacy and personal data have continued to increase, leading to a lack of trust in advertisers and website operators who collect and use their personal data. However, some studies have also shown that if alternative technologies can provide better personalized experiences and more effective ad targeting, users may be more open to them. Therefore, this study will focus on exploring the impact of various factors on users' behavioral intentions to improve the usage rate and user satisfaction of UID2.0 in the future.
According to the results of this study, the factors influencing users' intentions are similar on mobile and computer devices, with Price Value, Hedonic Motivation, and Performance Expectations being the top three. Privacy was used as a moderating variable in this study and was divided into high and low concern groups based on the mean. However, no moderating effects of privacy were found for these three factors. Advertising recommendations for advertisers and alternative technology developers are suggested based on these findings.
1. 中文文獻
翁晨語 (2016). 以延伸整合型科技接受模式和數位生活型態探討 LINE TV 的使
用行為. 傳播研究所. 新竹市, 國立交通大學. 碩士: 127.
鄭婷方 (2022). 以 UTAUT2 模型探討 LINE Bank 使用者行為意圖-高雄市及台南
市為例. 財政稅務系. 高雄市, 國立高雄科技大學. 碩士: 102. 2. 英文文獻
Acquisti, A., et al. (2012). "The impact of relative standards on the propensity to disclose." Journal of marketing research 49(2): 160-174.
Agarwal, R. and J. Prasad (1999). "Are individual differences germane to the acceptance of new information technologies?" Decision sciences 30(2): 361-391.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior, Springer. Baek, T. H. and M. Morimoto (2012). "Stay away from me." Journal of advertising
41(1): 59-76.
Benes, R. (2019). "Do People Actually Want Personalized Ads?". from
https://www.insiderintelligence.com/content/do-people-actually-want-personalized- ads.
Boerman, S. C., et al. (2017). "Online behavioral advertising: A literature review and research agenda." Journal of advertising 46(3): 363-376.
Brough, A. R. and K. D. Martin (2021). "Consumer privacy during (and after) the COVID-19 pandemic." Journal of Public Policy & Marketing 40(1): 108-110.
40
Brown, S. A. and V. Venkatesh (2005). "Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle." MIS quarterly: 399-426.
Caudill, E. M. and P. E. Murphy (2000). "Consumer online privacy: Legal and ethical issues." Journal of Public Policy & Marketing 19(1): 7-19.
Cooper, D. A., et al. (2023). "Privacy considerations for online advertising: a stakeholder’s perspective to programmatic advertising." Journal of Consumer Marketing 40(2): 235-247.
Davis, F. D. (1989). "Perceived usefulness, perceived ease of use, and user acceptance of information technology." MIS quarterly: 319-340.
Desk, T. T. (2023). "The Trade Desk-OUR PARTNERS." from https://www.thetradedesk.com/us/our-platform/our-partners.
Dodds, W. B., et al. (1991). "Effects of price, brand, and store information on buyers’ product evaluations." Journal of marketing research 28(3): 307-319.
Elias, J. (2022). "Google delays cookie-cutting to 2024." from https://www.cnbc.com/2022/07/27/google-delays-cookie-cutting-to-2024.html.
Graeff, T. R. and S. Harmon (2002). "Collecting and using personal data: consumers’ awareness and concerns." Journal of Consumer Marketing 19(4): 302-318.
Graham, M. (2021). Google says it won’t use new ways of tracking you as it phases out browser cookies for ads. CNBC.
Graham, M. (2021). "Google says it won’t use new ways of tracking you as it phases out browser cookies for ads."
Green, J. (2020). "In Human Terms, Episode 15: Unified ID 2.0." https://www.youtube.com/watch?v=mJP2ngh0owc.
Hair, J. F., et al. (2011). "PLS-SEM: Indeed a silver bullet." Journal of Marketing theory and Practice 19(2): 139-152.
41
Johnson, G. A., et al. (2023). "Privacy and market concentration: intended and unintended consequences of the GDPR." Management science.
Laczniak, R. N. and D. D. Muehling (1993). "The relationship between experimental manipulations and tests of theory in an advertising message involvement context." Journal of advertising 22(3): 59-74.
Liang, C.-C. and W.-L. Shiau (2018). "Moderating effect of privacy concerns and subjective norms between satisfaction and repurchase of airline e-ticket through airline-ticket vendors." Asia Pacific Journal of Tourism Research 23(12): 1142-1159.
Limayem, M., et al. (2007). "How habit limits the predictive power of intention: The case of information systems continuance." MIS quarterly: 705-737.
Lina, L. F. and A. Setiyanto (2021). "Privacy concerns in personalized advertising effectiveness on social media." SRIWIJAYA INTERNATIONAL JOURNAL OF DYNAMIC ECONOMICS AND BUSINESS 5(2): 147-156.
Martin, K. D., et al. (2017). "Data privacy: Effects on customer and firm performance." Journal of Marketing 81(1): 36-58.
Maseeh, H. I., et al. (2021). "Privacy concerns in e‐commerce: A multilevel meta‐analysis." Psychology & Marketing 38(10): 1779-1798.
Mathieson, K., et al. (2001). "Extending the technology acceptance model: the influence of perceived user resources." ACM SIGMIS Database: the DATABASE for Advances in Information Systems 32(3): 86-112.
McCoy, S., et al. (2007). "The effects of online advertising." Communications of the ACM 50(3): 84-88.
Moloco (2021). "DSP vs SSP: understanding the advertising supply chain."
Navarro, J. G. (2023). "Marketing personalization worldwide - statistics & facts."
from https://www.statista.com/topics/4481/personalized-marketing/#topicOverview. Nysveen, H., et al. (2005). "Mobilizing the brand: The effects of mobile services on
brand relationships and main channel use." Journal of Service Research 7(3): 257-276. 42
Pickles, D. (2021). "Honest Conversations about Identity: The Value Exchange of the Open Internet." from https://youtu.be/Jmmv_QLQtnQ.
Schiff, A. (2022). "Google’s Encrypted Signals Program Just Entered Open Beta, And Here’s What You Need To Know About It." from https://www.adexchanger.com/ad- exchange-news/googles-encrypted-signals-program-just-entered-open-beta-and-heres- what-you-need-to-know-about-it/.
Schumann, J. H., et al. (2014). "Targeted online advertising: Using reciprocity appeals to increase acceptance among users of free web services." Journal of Marketing 78(1): 59-75.
Search, B. (2022). "Mobile Vs. Desktop Internet Usage(Lastest 2023 Data)." from https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics.
Sivan-Sevilla, I. and P. T. Parham (2022). "Toward (greater) Consumer Surveillance in a ‘cookie-less’ World: A Comparative Analysis of Current and Future Web Tracking Mechanisms."
Spake, D. F., et al. (2011). "Experience, comfort, and privacy concerns: antecedents of online spending." Journal of research in interactive marketing 5(1): 5-28.
Statcounter (2023). "Browser Market Share Worldwide." from https://gs.statcounter.com/browser-market-share.
Statista (2023). "Advertising & Marketing." from https://www.statista.com/markets/479/advertising-marketing/.
Team, U. (2023). "Uid2docs." from https://github.com/IABTechLab/uid2docs. Temkin, D. (2021). "Charting a course towards a more privacy-first web." from
https://blog.google/products/ads-commerce/a-more-privacy-first-web/.
Van Doorn, J. and J. C. Hoekstra (2013). "Customization of online advertising: The
role of intrusiveness." Marketing Letters 24: 339-351. 43
Venkatesh, V. and F. D. Davis (2000). "A theoretical extension of the technology acceptance model: Four longitudinal field studies." Management science 46(2): 186- 204.
Venkatesh, V., et al. (2003). "User acceptance of information technology: Toward a unified view." MIS quarterly: 425-478.
Venkatesh, V., et al. (2012). "Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology." MIS quarterly: 157-178.
Yun, H., et al. (2013). "Understanding the use of location-based service applications: do privacy concerns matter?" Journal of Electronic Commerce Research 14(3): 215.
Zhou, T., et al. (2010). "Integrating TTF and UTAUT to explain mobile banking user adoption." Computers in human behavior 26(4): 760-767.