簡易檢索 / 詳目顯示

研究生: 范錦程
Chin-Cheng Fan
論文名稱: 具寬頻帶波長可調光纖光柵之C+L band光纖雷射之研製
Wide-Tuning-Range Fiber Bragg Gratings for C+L Band Fiber Lasers
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 劉政光
Cheng-Kuang Liu
李三良
San-Liang Lee
王倫
Lon Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 68
中文關鍵詞: 波長可調光纖光柵線型共振腔波長可調光纖雷射
外文關鍵詞: wavelength tunable, linear cavity, tunable fiber Bragg grating (TFBG), fiber laser
相關次數: 點閱:296下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應高速傳輸的分波多工系統,頻寬需求越來越大,而波長可調雷射可做為分波多工系統之備用光源,也可用於光學量測與掃描元件與設備,具有使用上的彈性及便利。於本論文我們研製價廉的波長可調光纖雷射,它是利用可調光纖光柵來選定波長,我們同時架構出C頻帶、L頻帶與C+L頻帶的線型共振腔、波長可調式光纖雷射。
    為了製作波長可調光纖光柵,提出兩種方法分別是使用可繞式材料與熱熔膠材料,在論文中說明比較它們的優缺點。其中使用可撓式材料方式的波長可調光纖光柵其可調範圍最大可達22.4 nm,以及微調解析度只有0.6 nm,所以在本論文後續皆選擇此種方式來架構波長可調光纖雷射。
    線型共振腔波長可調光纖雷射在本篇論文實現兩種架構,第一種架構使用1×2 光纖耦合器搭配上兩根可調式光纖光柵,可調範圍涵蓋1534.96 nm至1566.0 nm之C 頻帶;利用相同概念可延伸至L 頻帶,一樣使用1×2 光纖耦合器搭配兩根波長可調式光纖光柵,可調範圍涵蓋1565.6 nm至1599.12 nm。第二種架構使用1×4 的光開關,加上四根波長可調光纖光柵,其中利用光開關做分流來涵蓋C+L 頻帶,也利用兩段增益光纖於L 頻帶使得到較高功率之光纖雷射輸出,最後整體波長可調範圍達71.58 nm,即從1528.8 nm至1600.38 nm幾乎涵蓋C+ L 頻帶。在室溫下整個波長可調頻譜之雷射功率最低為3.61 dBm,最高為6.95 dBm。對於不同波長之光纖雷射在-10°C至60°C的溫度變異,量測到的溫度係數皆為0.047 nm/°C且相當線性。於60°C的烤箱條件下持續12小時前後,其線型共振腔光纖雷射功率變動量低於±0.07 dB。


    Nowadays, the bandwidth requirement for wavelength division multiplexing (WDM) system is very crucial. A tunable laser could play a role as back-up light source for individual WDM lasers, as well as a measured light source for equipments and components testing. In this thesis, C, L and C+L band tunable fiber lasers based on tunable fiber Bragg gratings (TFBGs) were investigated. It has the merits of cheaper and more flexible than most of the commercial products.
    Here, two materials were utilized for realizing tunable FBGs and linear cavity fiber laser. There are hot-melt adhesive material and flexible material, respectively. The flexible material is the better one to make tunable FBG achieve a maximum tuning range of 22.4 nm with a fine-tuning resolution of 0.6 nm. The detail for parameters design and measurement are also addressed in later chapter.
    Two schemes for linear cavity tunable fiber lasers are proposed in this thesis. The first scheme employs an 1×2 optical fiber coupler integrated two TFBGs, the wavelength tunable laser for C band ranges from 1534.96 nm to 1566.0 nm. The same concept can also be applied to L-band ranges from 1565.6 nm to 1599.12 nm. The second scheme employs an 1×4 optical switch (OSW) integrated four TFBGs. A segment of gain fiber is connected to the common port of the OSW. Two FBGs in port 1 and port 2, respectively, cover the C band; the other two FBGs in port 3 and port 4, respectively, cover the L band. Two segments of gain fiber are located in port 3 and port 4 to interact with the residual pump power for upgrade the lasing signal level. The whole tuning range is up to 71.58 nm (i.e., from 1528.8 nm to 1600.38 nm), covering almost the C + L band. At room temperature, the minimum and maximum output power are 3.61 dBm and 6.95 dBm, respectively, in this C+L band linear cavity fiber laser. The temperature coefficient from -10°C to 60°C has a constant value of 0.047 nm/°C for different wavelengths in-between 1534.96 nm and 1599.12 nm. At 60°C, the power variation of linear cavity fiber laser is less than ±0.07 dB before and after 12-hour burning.

    摘要 I Abstract II 致謝 III 圖表索引 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 線性型摻鉺光纖雷射 4 2.1 摻鉺光纖放大原理 4 2.2 摻鉺光纖雷射之物理機制 5 2.3 摻鉺光纖雷射理論 8 2.4 線性型光纖雷射架構分析 10 第三章 關鍵元組件-光纖光柵與光開關 13 3.1 光纖光柵製作 13 3.2 光纖光柵退火機制 17 3.3 波長可調光纖光柵原理與設計 20 3.3.1 波長可調光纖光柵(熱熔膠) 21 3.3.2 波長可調光纖光柵(碳纖維材料) 22 3.4 可調光纖光柵製作與量測 23 3.4.1 波長可調光纖光柵(熱熔膠)之製作 23 3.4.2 波長可調光纖光柵之製作(碳纖維材料) 25 3.4.3 兩種波長可調方式之比較 27 3.5 光開關功能與種類 29 第四章 單頻帶波長可調光纖雷射 33 4.1 光纖雷射端面反射鏡 33 4.1.1 光循環器反射鏡 33 4.1.2 光纖迴路反射鏡 33 4.1.3 法拉第旋轉鏡 35 4.1.4 三種反射鏡比較 35 4.2 線性型摻鉺光纖雷射參數設計 37 4.2.1 光纖光柵反射率選擇 37 4.2.2 摻鉺光纖參數選擇 39 4.3 C-band 可調式摻鉺光纖雷射 40 4.4 L-band摻鉺光纖雷射 42 4.4.1 L-band摻鉺光纖放大原理 42 4.4.2 L-band 可調式摻鉺光纖雷射 44 4.5 本章小結 47 第五章 C+L band 波長可調光纖雷射 48 5.1 C+L band波長可調光纖雷射架構分析 48 5.2 C+L band波長可調光纖雷射架構量測 49 5.3 C+L band波長可調光纖雷射穩定度測試 54 5.3.1 溫度變化測試 55 5.3.2 恆溫穩定測試 57 5.4 本章小結 61 第六章 結論與未來展望 62 6.1 結論 62 6.2 未來展望 64 參考文獻 65

    [1] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, no. 4736, pp. 493-494, August 6, 1960.
    [2] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of IEE, vol. 13, pp. 1551-1558, 1966.
    [3] 廖顯奎譯,“光纖通訊,” 高立圖書有限公司,台北,2005。
    [4] M. A. Haidekker, W. J. Akers, D. Fischer and E. A. Theodorakis, “Optical fiber-based fluorescent viscosity sensor,” Opt. Lett., vol. 31, pp. 2529-2531, 2006.
    [5] Y. Wang, M. Han and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of interferometric fiber-optic sensors,” Opt. Lett., vol. 31, pp. 2408-2410, 2006.
    [6] 許凱翔,“C頻帶波長可調線性型單縱模光纖雷射之研製,” 國立台灣科技大學碩士論文,2010年6月。
    [7] G. Keiser, FTTx Concepts and Application, New Jersey, USA: Wiley-IEEE Press, 2006.
    [8] S. Yamashita and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering both C-band and L-band,” IEEE J. Select. Topics in Quantum Electron., vol. 7, pp.41 -43, 2001.
    [9] A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable erbium-doped ring laser: Experimentation and modeling,” IEEE J. Select. Topics Quantum Electron., vol. 7, pp.22 -29, 2001.
    [10] B. O. Guan, H. Y. Tam, H. L. W. Chan, X. Y. Dong, C. L. Choy, and M. S. Demokan, “Temperature-tuned erbium-doped fiber ring laser with polymer-coated fiber grating,” Opt. Commun., vol. 202, pp.331 -334, 2002.
    [11] Y.G. Liu, X. Dong, P. Shum, S. Yuan, G. Kai, X. Dong, “Stable room-temperature multi-wavelength lasing realization in ordinary erbium-doped fiber loop lasers,” Opt. Express, vol. 14, pp. 9293–9298, 2006.
    [12] J.R. Qian, J. Su, L. Hong , “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun., vol. 281, pp. 4432–4434, 2008.
    [13] M.A. Quintela, R.A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, J.M. Lopez-Higuera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photon. Technol. Lett., vol. 22, pp. 368–370, 2010.
    [14] M. J. F. Digonnet, ”Rare-earth-doped fiber lasers and amplifiers, revised and expanded,” second edition, Marcel Dekker. Inc., New York. Basel, 2001.
    [15] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, pp. 991-1007, 1997.
    [16] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” IEEE/OSA J. of Lightwave Technol, vol. 9, pp. 271-283, 1991.
    [17] C. F. Su and L. Wang, “Gain enhancement of L-band EDFA by using residual pump power in a three-stage configuration,” Opt. Commun., vol. 280, pp. 412-416, 2007.
    [18] P.C. Becker, N.A. Olsson, J.R. Simpson, “Erbium-Doped Fiber Amplifiers Fundamentals and Technology,” Academic press, 1997.
    [19] G. Keiser, Optical fiber communications. 5nd ed. India:Tata McGraw Hill Education, 2013.
    [20] 許偉貞,“波長可調之近單縱模線性型光纖雷射,” 國立台灣科技大學碩士論文,2012年6月。

    [21] T. Erdogan, Fiber grating spectra. IEEE/OSA J. of Lightwave Technol, vol. 15, pp. 1277-1294, 1997.
    [22] J. Hecht, Understanding of Fiber Optics. New Jersey, USA: Prentice Hall, 1999.
    [23] T. Erdogan and V. Mizrahi, “Decay of UV induced fiber Bragg gratings,” Proc. Optical Fiber Conference, pp. 50, 1994.
    [24] H. G. Limberger, C. Ban, R. P. Salathe, S. A. Slattery, D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,”Opt. Express, vol. 15, pp. 5610-5615, 2007.
    [25] Y. Zhao, C. Yu, and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Optics and Laser Technology, vol. 36, pp. 39-42, 2004.
    [26] H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang and Su. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sensors Journal, vol. 12, no.7, pp. 2496-2500, 2012.
    [27] L. H. Liu, H. Zhang, Q. D. Zhao, Y. Liu and F. Li, “Temperature-independent FBG pressure sensor with high sensitivity,” Optical Fiber Technology, vol.13, pp.78-80, 2007.
    [28] R. Kashyap, Fiber Bragg gratings. San Diego, USA:Academic Press, 1999.
    [29] 陳宣臣, “波長可調光纖光柵之研製與應用,” 國立台灣科技大學碩士論文,2004年6月。
    [30] 洪健庭, “磁光元件之延伸設計及其應用,” 私立淡江大學碩士論文, 民國97年。
    [31] 龔倩, “光網絡的組網與優化設計,” 北京郵電大學出版社,北京,2002。
    [32] S. K. Liaw, W. Y. Jang, C. J. Wang and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, no. 12, pp. 2280-2285, 2007.
    [33] D. B. Mortimore, “Fiber loop reflectors,” IEEE/OSA J. of Lightwave Technol, vol. 6, no. 7, pp.1217-1224, 1988.
    [34] S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a faraday rotator mirror,” IEEE/OSA J. of Lightwave Technol, vol. 14, no. 3, pp. 385-390, 1996.
    [35] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average Inversion Level, Modeling and Physics of Erbium-Doped Fiber Amplifiers,” IEEE Journal of Quantum Electronics, vol. 3, no. 4, pp. 991-1007, 1997.
    [36] H. Ono, M. yamada,TerutoshiKanamori, ShoichiSudo, and YasutakeOhishi “1.58-um band gain-flattened Erbium-Doped Fiber Amplifiers for WDM transmission systems,” IEEE/OSA J. of Lightwave Technol, vol. 17, no. 3, pp. 490-496, 1999.
    [37] 陳威廷,“寬頻摻鉺光纖放大器之優化研製,” 國立台灣科技大學碩士論文,2007年6月。
    [38] P. R. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. , vol.29, pp.1191-1193, 1993.

    無法下載圖示 全文公開日期 2019/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE