簡易檢索 / 詳目顯示

研究生: 林義霖
Yi-Lin Lin
論文名稱: 應用於自然光照明系統之全反射與模組化無焦耦合器設計
A Modular afocal coupler design with total internal reflection for Natural Light Illumination System
指導教授: 黃忠偉
Jong-Woei Whang
林保宏
Pao-Hung Lin
口試委員: 徐巍峰
陳怡永
王孔政
林保宏
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 76
中文關鍵詞: 自然光照明系統光學耦合器全反射定理無焦系統
外文關鍵詞: NLIS, optical coupler, total internal reflection, afocal system
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,為了解決能源耗竭、環境破壞問題,可再生能源的相關研究越來越多。其中,太陽能是一種取之不盡,用之不竭的能源,因此有關太陽能的發展備受注意。為了減少能源的消耗及汙染,本實驗室開發一套照明系統,稱為自然光照明系統,有別於一般的太陽能電池需要經過能量轉換,自然光照明系統則是透過幾何光學設計的元件,將太陽光系統化地直接導入至室內空間進行照明,減少了光電轉換過程中的能量損耗,讓太陽光達到最大的使用效率。
    自然光照明系統是以光磚模組做為集光器,經過大面積的鋪設來收集足夠的太陽光。我們所採用的光磚模組具有4個出口,並以光纖作為傳光元件進行傳遞,當光磚數量越多,連接的光纖數量也越多,導致在同樣空間下,光磚的鋪設數量也會因此受到限制。為了解決光磚模組出口過多問題,提高在相同空間下光磚模組的鋪設數量,本論文提出了模組化耦合器之設計,將多出口整合為單一出口,並進行光線傳輸。
    本論文中提出的耦合器設計,是利用類似積木可拼湊、組合多樣的特性作為本次在結構上的設計概念。本文採用三維的光路設計與全反射式的雙拋物面無焦壓縮,設計出新一代的模組化耦合器。在結構上,比前一代耦合器更小,經過串接6個耦合器進行模擬分析:在理想的平行光源下,其效率相較於前一代耦合器,雖然僅提升了約4%;但在經過實驗室目前有著±2度發散角的準直器的光源後,其效率相較於前一代耦合器的9.18%,提升至74.7%。由模擬結果可得知,本文提出的新一代耦合器在各方面表現皆優於前一代耦合器。


    In recent years, in order to solve the problem of energy depletion and environmental damage, more and more researches on renewable energy have been made. In order to reduce energy consumption and pollution, our laboratory developed a Natural Light Illumination System (NLIS) which designed through geometric optics. The sunlight is systematically introduced directly into the indoor space for illumination, which allows the sunlight to reach the maximum use efficiency.
    NLIS uses a lightbrick module as a concentrator. The lightbrick module we use has 4 exit ports and transmits the fiber as a light transmission component. As the number of lightbricks increases, the number of connected fibers increases. In order to solve the problem of excessive exit ports of lightbrick modules, this study proposes the design of modular couplers, which integrates multiple exit ports into a single exit port and transmits light.
    In this study, a new generation of modular couplers is designed using three-dimensional optical path design and total internal reflection double paraboloid afocal compression. In terms of structure, it is smaller than the previous generation coupler, and is connected to 6 couplers for simulation analysis:In an ideal parallel source, the efficiency is only about 4% higher than that of the previous generation coupler. However, after passing through the light source of the collimator with a ±2 degree divergence angle. The efficiency is increased to 74.7% compared with 9.18% of the previous generation coupler. As a result that the new generation of couplers proposed in this study is superior to the previous generation couplers in all aspects.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3章節概述 3 第二章 光學基礎理論 4 2.1幾何光學原理 4 2.1.1折射率(Refractive Index) 4 2.1.2光程(Optical Path Length) 5 2.1.3費馬定理(Fermat’s Theorem) 6 2.1.4反射定律(Law of Reflection) 6 2.1.5司乃爾定律(Snell’s Law) 7 2.1.6全反射(Total Internal Reflection,TIR) 7 2.1.7光展量定理(Etendue Principle) 8 2.1.8集光比定義 9 2.2波動光學原理 10 2.2.1菲涅爾方程式(Fresnel Equation) 10 2.3常用照明光學名詞 11 2.3.1立體角(Solid angle, Ω) 12 2.3.2光通量(Luminous Flux,Φ) 12 2.3.3照度(Illuminance, E) 13 2.3.4輝度(Luminance, L) 14 2.3.5輻射度學與光度學比較 15 第三章 自然光照明系統介紹 17 3.1常見日照系統 17 3.1.1動態式日照系統 17 3.1.2靜態式日照系統 19 3.2自然光照明系統(Natural Light Illumination System) 20 3.2.1前集光子系統 21 3.2.2集光子系統 22 3.2.3傳光子系統 23 3.2.4放光子系統 25 第四章 耦合器設計概念 26 4.1 自然光照明系統耦合問題 26 4.2改善方法 28 4.3上一代耦合器設計概念 28 4.3.1上一代耦合器結構與設計方法 28 4.3.2上一代耦合器問題探討 32 4.4新一代耦合器設計概念 33 4.4.1稜鏡結構設計 34 4.4.2無焦系統設計 35 4.4.3傳輸通道 38 第五章 模擬結果分析與比較 40 5.1模擬架構與效率量化指標 40 5.1.1模擬架構 40 5.1.2效率量化指標 42 5.2理想光源分析與比較 43 5.2.1耦合器之主要結構分析 43 5.2.2新一代耦合器之有無傳輸通道分析 45 5.2.3耦合器之有傳輸通道分析 48 5.3實際光源分析與比較 50 5.3.1準直器架構 50 5.3.2耦合器之有傳輸通道分析 53 第六章 結論與未來展望 57 6.1結論 57 6.2未來展望 58 參考文獻 59 附錄 62

    [1] IPCC. 2013. "Climate Change 2013:The Physical Science Basis. ." http://www.climatechange2013.org/.
    [2] Weitemeyer, Stefan, David Kleinhans, Thomas Vogt, and Carsten Agert. 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage." Renewable Energy 75:14-20.
    [3] Tanaka, Hiroshi. 2018. "Analyzing the effect of an enlarged flat plate reflector (FPR) on a vertical multiple-effect diffusion solar still’s (VMEDS) performance." Applied Thermal Engineering.
    [4] Burugula, Vasishta, Sumon Dey, Srinivas Kota, and K Srinivas Reddy. 2017. "Development of solar hybrid micro-grid for reliable energy supply." 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy).
    [5] Done, Adrian, Elena-Daniela Olariu, Alin-Mihai Căilean, and Sebastian-Andrei Avătămăniţei. 2018. "Green power supply for an intelligent traffic light enhanced with visible light communications capabilities." 2018 International Conference on Development and Application Systems (DAS).
    [6] Vázquez-Moliní, Daniel, Mario González-Montes, Antonio Álvarez Fernández-Balbuena, Ángel García-Botella, Wilfried Pohl, Teresa Galan, and Eusebio Bernabéu. 2013. "Horizontal daylighting system for office buildings." Energy and buildings 67:525-530.
    [7] Ullah, Irfan, and Allen Jong-Woei Whang. 2015. "Development of optical fiber-based daylighting system and its comparison." Energies 8 (7):7185-7201.
    [8] IPCC. 2001. "Climate Change 2001:The Scientific Basis.". http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg1/041.htm#121.
    [9] 張善政. 2014. 能源國家型科技計畫與發展替代能源以實現非核家園的能源自主進程. 臺北,臺灣: 國家科學委員會專案報告.
    [10] Krarti, Moncef, Paul M. Erickson, and Timothy C. Hillman. 2005. "A simplified method to estimate energy savings of artificial lighting use from daylighting." Building and Environment 40 (6):747-754. doi: https://doi.org/10.1016/j.buildenv.2004.08.007.
    [11] Whang, Allen Jong-Woei, Yi-Yung Chen, Shu-Hua Yang, Po-Hsuan Pan, Kao-Hsu Chou, Yu-Chi Lee, Zong-Yi Lee, Chi-An Chen, and Cheng-Nan Chen. 2010. "Natural light illumination system." Applied Optics 49 (35):6789-6801. doi: 10.1364/AO.49.006789.
    [12] Ku, Nai-Lun, Yi-Yung Chen, Wei-Che Hsieh, and Allen Jong-Woei Whang. 2012. "A cascadable circular concentrator with parallel compressed structure for increasing the energy density." Physics, Simulation, and Photonic Engineering of Photovoltaic Devices.
    [13] Garcia-Hansen, Veronica, and Ian Edmonds. 2015. "Methods for the illumination of multilevel buildings with vertical light pipes." Solar Energy 117:74-88.
    [14] Ullah, Irfan, and Seoyong Shin. 2014. "Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings." Energy and Buildings 72:246-261.
    [15] 陳木星,陳傑閔,卓達雄,陳賢堂,孫涵瑛,葉上民,黃宣瑜. 2010. 幾何光學Geometrical Optics. 台北: 全華圖書有限股份公司.
    [16] 耿繼業,何建娃. 2013. 幾何光學. 台北: 全華圖書有限股份公司.
    [17] 何雅潔. 2014. 應用於日光集中器之高效率雙層耦合結構設計, 碩士論文. 台北: 國立台灣科技大學電子工程研究所.
    [18] 林振漢. 1997. 工程電磁學. 臺北: 高立圖書有限公司.
    [19] 李長綱. 2000. 電磁學與電波的理論與應用(下). 臺北: 鼎茂圖書.
    [20] 楊世堯. 2017. 具高效率之自由曲面優化準直器設計方式, 碩士論文. 臺北: 國立台灣科技大學光電工程所.
    [21] Fraas, L. M., W. R. Pyle, and P. R. Ryason. 1983. "Concentrated and piped sunlight for indoor illumination." Applied Optics 22 (4):578-582. doi: 10.1364/AO.22.000578.
    [22] 日商佳珀科技工程股份有限公司. "HIMAWARI向日葵追日儀." http://jato-it.com/himawari/faq.php.
    [23] Solatube International, Inc. "Solatube." http://www.solatube.com/.
    [24] Whang, Allen Jong Woei, Cheng-Ming Chang, Chun-Han Chou, Chia-Min Lin, Shih-Min Chao, Kai-Cyuan Jhan, and Ming Cheng Wang. 2014. "Innovative light-collecting module using prismatic array structures." Chinese Optics Letters 12 (1):012201.
    [25] Wang, Kung-Jeng, Nguyen Dang Tien Dung, and Allen Jong-Woei Whang. 2014. "Prism-based sunlight concentrator layout: A genetic algorithm solution." Journal of Solar Energy Engineering 136 (2):021016.
    [26] Yang, Shu-Hua, Yi-Yung Chen, and Allen Jong-Woei Whang. 2009. "Using prismatic structure and brightness enhancement film to design cascadable unit of static solar concentrator in natural light guiding system." Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI.
    [27] Jenkins, David, Tariq Muneer, and Jorge Kubie. 2005. "A design tool for predicting the performances of light pipes." Energy and Buildings 37 (5):485-492. doi: https://doi.org/10.1016/j.enbuild.2004.09.014.
    [28] Jenkins, David, and Tariq Muneer. 2003. "Modelling light-pipe performances—a natural daylighting solution." Building and Environment 38 (7):965-972. doi: https://doi.org/10.1016/S0360-1323(03)00061-1.
    [29] Chen, Bo-Jian, Yin-Ti Chen, Irfan Ullah, Chun-Han Chou, Kai-Cyuan Chan, Yi-Lung Lai, Chia-Ming Lin, Cheng-Ming Chang, and Allen Jong-Woei Whang. 2015. "Innovative light collimator with afocal lens and total internal reflection lens for daylighting system." Applied optics 54 (28):E165-E170.
    [30] 何友瀚. 2013. 設計可用於多光源的自由曲面透鏡應用於自然光照明統, 碩士論文. 台北: 國立台灣科技大學光電工程研究所.
    [31] 高培原. 2015. 應用於自然光照明系統之模組化耦合器, 碩士論文. 台北: 國立台灣科技大學電子工程研究所.
    [32] 陳尹迪. 2015. 具無焦透鏡與全反射透鏡之光準直器應用於自然光照明系統, 碩士論文. 台北: 國立台灣科技大學電子工程研究所.

    無法下載圖示 全文公開日期 2023/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE