簡易檢索 / 詳目顯示

研究生: 林益全
Yi-Chuan Lin
論文名稱: 單點式磁振頻譜體素與脂肪抑制在標準腦之自動定位
Automatic localization of single voxel MRS and saturation band on template
指導教授: 林益如
Yi-Ru Lin
口試委員: 黃騰毅
Teng-Yi Huang
蔡尚岳
Shang-Yueh Tsai
劉益瑞
Yi-Jui Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 42
中文關鍵詞: 磁共振頻譜單點式頻譜功能性磁共振影像自動對位演算圖形使用者介面飽和脈衝腦部脂肪抑制
外文關鍵詞: saturation pulse, brain fat suppression, Powell's method, Brodmann area
相關次數: 點閱:207下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 延續學長論文,自動化單點式磁共振頻譜定位技術的圖形介面工具
    (105/06/29彭博煜)<1>,在<1>中增加新功能,脂肪飽和脈衝抑制,Fat-Sat脈衝是調諧到脂肪共振頻率的短時間RF脈衝。它們在MR成像序列開始之前立即應用。這些化學選擇性脈衝導致來自脂肪的信號被飽和,而水信號相對不受影響。 Fat-Sat技術是應用最廣泛的脂肪抑制方法。這種方法的普及源於這樣一個事實,即易於實現,通常是有效的,並且可以與幾乎任何成像序列結合使用。當定義VOI時,偵測是否太靠近頭殼,自動產生Outer volume suppression (OVS band),省去手動調整會造成的誤差以及時間,透過VOI擴張與頭殼脂肪的交界,計算出OVS band的中心點,以及旋轉角度,進而構成。

    以及開發一個自動化定義VOI,只要給予一個腦部區域,系統自動產生出一個符合的VOI,以節省手動時間,並透過計算放置在更精準的位置上,使用方法為Powell's method,以brodmann area作呈現。


    Continuing the thesis paper, Toolbox for Automatic Localization of Volume of Interest in Single Voxel MRS (105/06/29 PO-YU PENG) <1>, adding a new function in <1>, fat saturation pulse suppression, Fat-Sat pulse is a short-time RF pulse tuned to the fat resonance frequency. They are applied immediately before the start of the MR imaging sequence. These chemoselective pulses cause the signal from the fat to be saturated while the water signal is relatively unaffected. Fat-Sat technology is the most widely used method of fat suppression. The popularity of this approach stems from the fact that it is easy to implement, is generally effective, and can be used in conjunction with almost any imaging sequence. When defining the VOI, it detects whether it is too close to the head casing, automatically generates Outer volume suppression (OVS band), eliminating the error and time caused by manual adjustment, and calculating the center of the OVS band through the boundary between the VOI expansion and the head shell fat. Point, and the angle of rotation, and then constitute.
    And to develop an automated definition VOI, as long as a brain block is given, the system automatically generates a matching VOI to save manual time and put it in a more precise position by calculation. The method is Powell's method, which is made in brodmann area. Presented.

    Abstract 摘要 List of Contents List of Figures List of Tables Chapter 1. Introduction 1.1 Magnetic Resonance Spectroscopy 1.2 Single-Voxel Spectroscopy 1.3 Functional Magnetic Resonance Imaging 1.4 Statistical Parametric Mapping 1.5 Montreal Neurological Institute (MNI) space 1.7 Spatial Saturation Pulses 1.8 TPM (Standard Space Tissue Probability Maps) Chapter 2. Materials and methods 2.1 Environment setting 2.2 Outer volume suppression (OVS) band 2.2.1 Motivation 2.2.2 Parameters 2.2.3 Distance 2.2.4 GUI for Outer volume suppression (OVS) band 2.3 Auto design voxel 2.3.1 Motivation 2.3.2 Subjects and materials 2.3.3 Orientation 2.3.4 Rotation Chapter 3. Results 3.1 Outer volume suppression (OVS) band 3.2 Auto design voxel Chapter 4. Discussion Chapter 5. Conclusion and Future work Chapter 6. Reference

    1. Malhi, G. S., et al. (2002). "Magnetic resonance spectroscopy and its applications in psychiatry." Aust N Z J Psychiatry 36(1): 31-43.

    2. Pouwels, P. J. and J. Frahm (1998). "Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS." Magn Reson Med 39(1): 53-60.

    3. Gottschalk, M., et al. (2016). "Refined modelling of the short-T2 signal component and ensuing detection of glutamate and glutamine in short-TE, localised, (1) H MR spectra of human glioma measured at 3 T." NMR Biomed 29(7): 943-951.

    4. Karamchandani, R. R., et al. (2014). "Incidence of delayed seizures, delayed cerebral ischemia and poor outcome with the use of levetiracetam versus phenytoin after aneurysmal subarachnoid hemorrhage." J Clin Neurosci 21(9): 1507-1513.

    5. Zarifi, M. and A. A. Tzika (2016). "Proton MRS imaging in pediatric brain tumors." Pediatr Radiol 46(7): 952-962.

    6. Zhong, S., et al. (2014). "Similarities of biochemical abnormalities between major depressive disorder and bipolar depression: a proton magnetic resonance spectroscopy study." J Affect Disord 168: 380-386.

    7. Lunsing, R. J., et al. (2017). "Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders." Eur Radiol 27(3): 976-984.

    8. Marro, K. I., et al. (2010). "Quantitative in vivo magnetic resonance spectroscopy using synthetic signal injection." PLoS One 5(12): e15166.

    9. Heo, H., et al. (2016). "On the Utility of Short Echo Time (TE) Single Voxel 1H-MRS in Non-Invasive Detection of 2-Hydroxyglutarate (2HG); Challenges and Potential Improvement Illustrated with Animal Models Using MRUI and LCModel." PLoS One 11(1): e0147794.
    10. Hsu, S. H., et al. (2013). "Proton MR spectroscopy in patients with pyogenic brain abscess: MR spectroscopic imaging versus single-voxel spectroscopy." Eur J Radiol 82(8): 1299-1307.

    11. Ricci, P. E., et al. (2000). "Effect of voxel position on single-voxel MR spectroscopy findings." AJNR Am J Neuroradiol 21(2): 367-374.

    12. Single-photon-emission Computed Tomography in Epilepsy Christopher C. Rowe, in Magnetic Resonance in Epilepsy (Second Edition), 2005) :385-394.

    13. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative G. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 2011;54(1):313-327.

    14. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273-289.

    QR CODE