簡易檢索 / 詳目顯示

研究生: 李柏漢
Po-Han Lee
論文名稱: 植物多酚與金屬離子配位化合物型態對去除活性氧物質之影響
The Effect of Plant Polyphenols and Metal Ion Complexes Morphology on Reactive Oxygen Species Removal
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
王勝仕
Sheng-Shih Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 93
中文關鍵詞: 活性氧物質奈米酶金屬多酚網
外文關鍵詞: Reactive Oxygen Species, Nanozyme, Metal-Phenolic Networks
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

汽車廢氣、廚房油煙、焊接燃燒廢氣、燃燒香菸煙氣及空氣中PM2.5過高時等情況,都會在空氣中產生出活性氧物質(Reactive Oxygen Species, ROS),對經常暴露在活性氧物質環境下的人造成嚴重的傷害。本論文將以植物中所含之多酚類與金屬過渡離子配位化合物所形成之金屬多酚網絡(Metal-Polyphenol Network, MPN)作為奈米酶,用於去除液體及氣體中之活性氧物質。研究主要選用單寧酸與二價銅離子進行研究,此兩者在水溶液中極易形成配位化合物而沉澱析出,改變水溶液之極性及離子強度,則會產生不同形態之奈米沉澱物,如奈米片狀、奈米顆粒及奈米針狀結構沉澱,此三種型態之奈米沉澱物皆具有類過氧化氫酶之活性,可視為一種奈米酶,其中配位螯合之銅離子為類過氧化氫酶活性來源,三種型態當中奈米針狀結構具有最高之類過氧化氫酶活性,其最大反應速率Vmax為1.07×10-6 M/s,而奈米顆粒則對過氧化氫有較好的親和力其Km值為10.09×10–3 M。在Fenton反應溶液中所產生之氫氧自由基(˙OH)亦可被此奈米酶去除,主要是由其中單寧酸所反應消耗,奈米顆粒型態之奈米酶則顯出較高的去除氫氧自由基活性,其濃度在0.8mg/ml時可去除62% 50mM之氫氧自由基。以燃燒香菸之煙氣測試此奈米酶去除氣體中活性氧物質的能力,發現20mg三種型態之奈米酶皆能去除燃燒一根香菸之煙氣中>75%活性氧物質。奈米酶能成功地分別沉積固定於聚丙烯不織布及活性碳不織布上,在活性碳不織布沉積固定表面濃度為8 mg/cm2時,能去除燃燒一根香菸之煙氣中約39%之活性氧物質。


Vehicle exhaust, kitchen fumes, welding combustion exhaust, burning cigarette smoke, and air with high PM2.5 value all generate reactive oxygen species(ROS) in air that cause serious harm to those who are constantly exposed to the hazards of reactive oxygen species. In this study, Metal-Polyphenol Network (MPN) precipitate generated by mixing polyphenol with and transition metal ions, is utilized as a nanozyme to remove reactive oxygen species in water and air. In this work, tannic acid and copper ion were used as model compounds. The nanozyme precipitate from tannic acid and copper ions mixture with different polarity and ionic strength will generate nanozyme of different morphology such as nanosheets, nanoparticles, and nanoneedles. The catalase activity of these nanozymes was first evaluated. It was found that copper ions in the nanozyme plays the major role as catalase. Nanoneedle structure had the highest catalase activity with maximum reaction velocity Vmax value of 1.07×10-6 M/s, while the nanoparticles have a better affinity for the reactant hydrogen peroxide with a Km value of 10.09×10–3 M. The hydroxyl radicals generated in Fenton reaction could also be effectively removed mainly due to the presence of tannic acid in the nanozymes. Approximately, 62% of hydroxyl radical generated from 50 mM H2O2 could be removed by 0.8mg/ml nanoparticle shaped nanozyme. >75% reactive oxygen species from smoke of one burning cigarettes could be removed by employing 20mg of all different shaped nanozyme. The as-prepared nanozymes could be successfully deposited and fixed on polypropylene non-woven fabric and activated carbon non-woven fabric, respectively. The reactive oxygen species removal rate of 39% was achieved for treating smoke from one buring cigarette by employing an activated carbon non-woven fabric loaded with 8 mg/cm2 nanozyme.

中文摘要 I Abstract IV 誌謝 V 目錄 VI 圖索引 X 表索引 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的及內容 3 第二章 文獻回顧 5 2.1 活性氧物質 (Reactive oxygen species;ROS) 5 2.1.1 超氧自由基 (superoxide, O2-) 6 2.1.2 過氧化氫(Hydrogen peroxide, H2O2) 7 2.1.3 氫氧自由基(Hydroxyl radical, •OH) 8 2.2 奈米酶 (Nanozyme) 9 2.2.1 類超氧自由基歧化酶之奈米酶 (SOD-like Nanozyme) 9 2.2.2 類過氧化物酶之奈米酶 (Peroxidase-like Nanozyme) 10 2.2.3 類多酶活性之奈米酶 (Multi-Enzyme-like Nanozyme) 12 2.3 金屬多酚網 (Metal-Phenolic Networks;MPN) 13 2.3.1 單寧酸 (Tannic acid;TA) 15 2.4 DCFH2-DA (2,7-二氯二氫螢光素二乙酸酯) 17 2.5 燃燒香菸之煙氣取樣方法 19 第三章 實驗方法、流程與材料 21 3.1 實驗流程 21 3.2 實驗材料與設備 22 3.2.1 實驗藥品 22 3.2.2 實驗儀器與設備 23 3.3 溶液配置 24 3.3.1 Fenton溶液 24 3.3.2 25μM DCFH溶液 24 3.3.3 DCFH-HRP 溶液 24 3.3.4 LB medium 24 3.3.5 TSB medium 25 3.3.6 PBS buffer (pH=7.4) 25 3.4 金屬多酚網絡MPN奈米酶樣品製備 26 3.4.1 片狀金屬多酚網絡MPN奈米酶合成 26 3.4.2 顆粒狀金屬多酚網絡MPN奈米酶合成 26 3.4.3 針狀金屬多酚網絡MPN奈米酶合成 26 3.5 材料性質分析 27 3.5.1 掃描式電子顯微鏡(SEM) 27 3.5.2 界面電位(Zeta-Potential)分析 27 3.5.3 傳立葉轉換紅外線光譜分析儀(FTIR) 27 3.5.4 進階式熱重分析儀 (TGA) 27 3.5.5 表面積及孔徑分析儀 (BET) 28 3.6 金屬多酚網絡MPN奈米酶活性測試 29 3.6.1 類過氧化氫酶(Catalase-like)活性測試 29 3.6.2 去除氫氧自由基(•OH)活性測試 30 3.6.3 市售自由基檢測藥劑測試 30 3.6.4 總量活性氧物質(ROS)檢量線 31 3.6.5 燃燒香菸之煙氣中活性氧物質(ROS)檢測法 32 3.7 抗菌測試-抑菌環寬(Zone of Inhibition) 33 第四章 結果與討論 34 4.1 金屬多酚網絡MPN奈米酶之製備及型態探討 34 4.1.1 片狀金屬多酚網絡MPN奈米酶 34 4.1.2 顆粒狀金屬多酚網絡MPN奈米酶 36 4.1.3 針狀金屬多酚網絡MPN奈米酶 38 4.1.4 不同CuTA奈米酶型態比較 40 4.2 CuTA奈米酶活性測試 43 4.2.1 類過氧化氫酶(Catalase-like)活性測試 43 4.2.2 去除氫氧自由基(•OH)活性測試 50 4.2.3 市售自由基檢測藥劑測試 54 4.3 CuTA奈米酶去除燃燒香菸之煙氣中活性氧物質 55 4.3.1 片狀CuTA奈米酶去除燃燒香菸之煙氣中活性氧物質檢測 57 4.3.2 片狀CuTA奈米酶與單寧酸去除氣態活性氧物質檢測 58 4.3.3 各型態CuTA奈米酶去除氣態活性氧物質比較 60 4.4 不同型態CuTA奈米酶抗菌測試 61 4.5 片狀CuTA奈米酶應用於不織布 63 4.5.1 聚丙烯不織布複合片狀CuTA奈米酶 63 4.5.2 活性碳不織布複合片狀CuTA奈米酶 65 4.5.3 片狀CuTA奈米酶複合不織布氣體活性氧物質去除能力檢測 66 第五章 結論 68 參考資料 70

[1] K. L. Pinder, “Fogler, H. S. ‘elements of chemical reaction engineering’, prentice-hall, englewood cliffs, New Jersey 07632, 1986, 769 pages. Price $74.15 Canadian,” The Canadian Journal of Chemical Engineering, vol. 65, no. 3, pp. 526–527, Jun. 1987, doi: 10.1002/cjce.5450650330.
[2] C. A. Ferreira, D. Ni, Z. T. Rosenkrans, and W. Cai, “Scavenging of reactive oxygen and nitrogen species with nanomaterials,” Nano Research, vol. 11, no. 10, pp. 4955–4984, Oct. 2018, doi: 10.1007/s12274-018-2092-y.
[3] B. Yang, Y. Chen, and J. Shi, “Reactive Oxygen Species (ROS)-Based Nanomedicine,” Chemical Reviews, vol. 119, no. 8, pp. 4881–4985, Apr. 2019, doi: 10.1021/acs.chemrev.8b00626.
[4] S. YLA-HERTTUALA, “Oxidized LDL and Atherogenesisa,” Ann N Y Acad Sci, vol. 874, no. 1 HEART IN STRE, pp. 134–137, Jun. 1999, doi: 10.1111/j.1749-6632.1999.tb09231.x.
[5] E. R. STADTMAN and R. L. LEVINE, “Protein Oxidation,” Ann N Y Acad Sci, vol. 899, no. 1, pp. 191–208, Jan. 2006, doi: 10.1111/j.1749-6632.2000.tb06187.x.
[6] L. J. Marnett, “Oxyradicals and DNA damage,” Carcinogenesis, vol. 21, no. 3, pp. 361–370, Mar. 2000, doi: 10.1093/carcin/21.3.361.
[7] Y. Guo et al., “Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1864, no. 1, pp. 238–251, Jan. 2018, doi: 10.1016/j.bbadis.2017.09.029.
[8] J. M. Matés, J. A. Segura, F. J. Alonso, and J. Márquez, “Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms,” Free Radical Biology and Medicine, vol. 49, no. 9, pp. 1328–1341, Nov. 2010, doi: 10.1016/j.freeradbiomed.2010.07.028.
[9] Z. An, J. Yan, Y. Zhang, and R. Pei, “Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases,” Journal of Materials Chemistry B, vol. 8, no. 38, pp. 8748–8767, 2020, doi: 10.1039/D0TB01380C.
[10] J. Wu et al., “Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II),” Chemical Society Reviews, vol. 48, no. 4, pp. 1004–1076, 2019, doi: 10.1039/C8CS00457A.
[11] M. Valko, H. Morris, and M. Cronin, “Metals, Toxicity and Oxidative Stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, May 2005, doi: 10.2174/0929867053764635.
[12] M. Genestra, “Oxyl radicals, redox-sensitive signalling cascades and antioxidants,” Cellular Signalling, vol. 19, no. 9, pp. 1807–1819, Sep. 2007, doi: 10.1016/j.cellsig.2007.04.009.
[13] M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” The International Journal of Biochemistry & Cell Biology, vol. 39, no. 1, pp. 44–84, Jan. 2007, doi: 10.1016/j.biocel.2006.07.001.
[14] S. P. S. M. I. O. C. S. M. Mukherji, “Reaction Mechanism in Organic Chemistry”.
[15] S. Oka, T. Tsuzuki, M. Hidaka, M. Ohno, Y. Nakatsu, and M. Sekiguchi, “Endogenous ROS production in early differentiation state suppresses endoderm differentiation via transient FOXC1 expression,” Cell Death Discovery, vol. 8, no. 1, p. 150, Dec. 2022, doi: 10.1038/s41420-022-00961-2.
[16] M. Rohan Fernando et al., “Mitochondrial thioltransferase (glutaredoxin 2) has GSH‐dependent and thioredoxin reductase‐dependent peroxidase activities in vitro and in lens epithelial cells,” The FASEB Journal, vol. 20, no. 14, pp. 2645–2647, Dec. 2006, doi: 10.1096/fj.06-5919fje.
[17] M. Marí, A. Morales, A. Colell, C. García-Ruiz, and J. C. Fernández-Checa, “Mitochondrial Glutathione, a Key Survival Antioxidant,” Antioxidants & Redox Signaling, vol. 11, no. 11, pp. 2685–2700, Nov. 2009, doi: 10.1089/ars.2009.2695.
[18] I. Hanukoglu, “Antioxidant Protective Mechanisms against Reactive Oxygen Species (ROS) Generated by Mitochondrial P450 Systems in Steroidogenic Cells,” Drug Metabolism Reviews, vol. 38, no. 1–2, pp. 171–196, Jan. 2006, doi: 10.1080/03602530600570040.
[19] S. Losada-Barreiro and C. Bravo-Díaz, “Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases,” European Journal of Medicinal Chemistry, vol. 133, pp. 379–402, Jun. 2017, doi: 10.1016/j.ejmech.2017.03.061.
[20] I. Fridovich, “SUPEROXIDE RADICAL AND SUPEROXIDE DISMUTASES,” Annual Review of Biochemistry, vol. 64, no. 1, pp. 97–112, Jun. 1995, doi: 10.1146/annurev.bi.64.070195.000525.
[21] P. Kuppusamy and J. L. Zweier, “Characterization of free radical generation by xanthine oxidase,” Journal of Biological Chemistry, vol. 264, no. 17, pp. 9880–9884, Jun. 1989, doi: 10.1016/S0021-9258(18)81740-9.
[22] H. A. Kontos et al., “Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats.,” Circulation Research, vol. 57, no. 1, pp. 142–151, Jul. 1985, doi: 10.1161/01.RES.57.1.142.
[23] M. Clara, C. N., F. H., and A. G., “Superoxide Dismutase and Oxidative Stress in Amyotrophic Lateral Sclerosis,” in Current Advances in Amyotrophic Lateral Sclerosis, InTech, 2013. doi: 10.5772/56488.
[24] S. Bedwell, R. T. Dean, and W. Jessup, “The action of defined oxygen-centred free radicals on human low-density lipoprotein,” Biochemical Journal, vol. 262, no. 3, pp. 707–712, Sep. 1989, doi: 10.1042/bj2620707.
[25] J. F. Collins, J. R. Prohaska, and M. D. Knutson, “Metabolic crossroads of iron and copper,” Nutrition Reviews, vol. 68, no. 3, pp. 133–147, Mar. 2010, doi: 10.1111/j.1753-4887.2010.00271.x.
[26] X. Meng, X. Zhang, M. Liu, B. Cai, N. He, and Z. Wang, “Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy,” Applied Materials Today, vol. 21, p. 100864, Dec. 2020, doi: 10.1016/j.apmt.2020.100864.
[27] F. Manea, F. B. Houillon, L. Pasquato, and P. Scrimin, “Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts,” Angewandte Chemie International Edition, vol. 43, no. 45, pp. 6165–6169, Nov. 2004, doi: 10.1002/anie.200460649.
[28] L. Gao et al., “Intrinsic peroxidase-like activity of ferromagnetic nanoparticles,” Nature Nanotechnology, vol. 2, no. 9, pp. 577–583, Sep. 2007, doi: 10.1038/nnano.2007.260.
[29] I. Nath, J. Chakraborty, and F. Verpoort, “Metal organic frameworks mimicking natural enzymes: a structural and functional analogy,” Chemical Society Reviews, vol. 45, no. 15, pp. 4127–4170, 2016, doi: 10.1039/C6CS00047A.
[30] H. Sun, Y. Zhou, J. Ren, and X. Qu, “Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications,” Angewandte Chemie International Edition, vol. 57, no. 30, pp. 9224–9237, Jul. 2018, doi: 10.1002/anie.201712469.
[31] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162–163, Nov. 1985, doi: 10.1038/318162a0.
[32] C. Korsvik, S. Patil, S. Seal, and W. T. Self, “Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles,” Chemical Communications, no. 10, p. 1056, 2007, doi: 10.1039/b615134e.
[33] S. Torbrügge, M. Reichling, A. Ishiyama, S. Morita, and Ó. Custance, “Evidence of Subsurface Oxygen Vacancy Ordering on Reduced, ” Physical Review Letters, vol. 99, no. 5, p. 056101, Aug. 2007, doi: 10.1103/PhysRevLett.99.056101.
[34] H. Zhao, R. Zhang, X. Yan, and K. Fan, “Superoxide dismutase nanozymes: an emerging star for anti-oxidation,” Journal of Materials Chemistry B, vol. 9, no. 35, pp. 6939–6957, 2021, doi: 10.1039/D1TB00720C.
[35] B. Garg and T. Bisht, “Carbon Nanodots as Peroxidase Nanozymes for Biosensing,” Molecules, vol. 21, no. 12, p. 1653, Dec. 2016, doi: 10.3390/molecules21121653.
[36] H. Sun, Y. Zhou, J. Ren, and X. Qu, “Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications,” Angewandte Chemie International Edition, vol. 57, no. 30, pp. 9224–9237, Jul. 2018, doi: 10.1002/anie.201712469.
[37] R. Zhao, X. Zhao, and X. Gao, “Molecular-Level Insights into Intrinsic Peroxidase-Like Activity of Nanocarbon Oxides,” Chemistry - A European Journal, vol. 21, no. 3, pp. 960–964, Jan. 2015, doi: 10.1002/chem.201404647.
[38] L. Gao et al., “Intrinsic peroxidase-like activity of ferromagnetic nanoparticles,” Nature Nanotechnology, vol. 2, no. 9, pp. 577–583, Sep. 2007, doi: 10.1038/nnano.2007.260.
[39] N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, and H. Tang, “Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2,” Ultrasonics Sonochemistry, vol. 17, no. 3, pp. 526–533, Mar. 2010, doi: 10.1016/j.ultsonch.2009.11.001.
[40] Y. Chen et al., “Catalase-like metal–organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recurrence,” Chemical Science, vol. 10, no. 22, pp. 5773–5778, 2019, doi: 10.1039/C9SC00747D.
[41] R. A. Festa and D. J. Thiele, “Copper: An essential metal in biology,” Current Biology, vol. 21, no. 21, pp. R877–R883, Nov. 2011, doi: 10.1016/j.cub.2011.09.040.
[42] T. Liu et al., “Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases,” Nature Communications, vol. 11, no. 1, p. 2788, Dec. 2020, doi: 10.1038/s41467-020-16544-7.
[43] C. Hao et al., “Chiral Molecule-mediated Porous Cu x O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson’s Disease,” J Am Chem Soc, vol. 141, no. 2, pp. 1091–1099, Jan. 2019, doi: 10.1021/jacs.8b11856.
[44] Y. Peng, Y. Ren, H. Zhu, Y. An, B. Chang, and T. Sun, “Ultrasmall copper nanoclusters with multi-enzyme activities,” RSC Advances, vol. 11, no. 24, pp. 14517–14526, 2021, doi: 10.1039/D1RA01410B.
[45] J. Guo et al., “Engineering Multifunctional Capsules through the Assembly of Metal-Phenolic Networks,” Angewandte Chemie International Edition, vol. 53, no. 22, pp. 5546–5551, May 2014, doi: 10.1002/anie.201311136.
[46] W. Luo et al., “Engineering robust metal–phenolic network membranes for uranium extraction from seawater,” Energy & Environmental Science, vol. 12, no. 2, pp. 607–614, 2019, doi: 10.1039/C8EE01438H.
[47] Z. Yang et al., “Tumour microenvironment-responsive semiconducting polymer-based self-assembling nanotheranostics,” Nanoscale Horizons, vol. 4, no. 2, pp. 426–433, 2019, doi: 10.1039/C8NH00307F.
[48] Y. Ping et al., “pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery,” Small, vol. 11, no. 17, pp. 2032–2036, May 2015, doi: 10.1002/smll.201403343.
[49] C. W. I. Haminiuk, G. M. Maciel, M. S. v. Plata-Oviedo, and R. M. Peralta, “Phenolic compounds in fruits - an overview,” International Journal of Food Science & Technology, vol. 47, no. 10, pp. 2023–2044, Oct. 2012, doi: 10.1111/j.1365-2621.2012.03067.x.
[50] S. Losada-Barreiro and C. Bravo-Díaz, “Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases,” European Journal of Medicinal Chemistry, vol. 133, pp. 379–402, Jun. 2017, doi: 10.1016/j.ejmech.2017.03.061.
[51] H. Zhang and R. Tsao, “Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects,” Current Opinion in Food Science, vol. 8, pp. 33–42, Apr. 2016, doi: 10.1016/j.cofs.2016.02.002.
[52] Q.-Z. Zhong et al., “Spray Assembly of Metal–Phenolic Networks: Formation, Growth, and Applications,” ACS Applied Materials & Interfaces, vol. 10, no. 39, pp. 33721–33729, Oct. 2018, doi: 10.1021/acsami.8b13589.
[53] B. L. Tardy, J. J. Richardson, J. Guo, J. Lehtonen, M. Ago, and O. J. Rojas, “Lignin nano- and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules,” Green Chemistry, vol. 20, no. 6, pp. 1335–1344, 2018, doi: 10.1039/C8GC00064F.
[54] A. Alford et al., “Manganoporphyrin-Polyphenol Multilayer Capsules as Radical and Reactive Oxygen Species (ROS) Scavengers,” Chemistry of Materials, vol. 30, no. 2, pp. 344–357, Jan. 2018, doi: 10.1021/acs.chemmater.7b03502.
[55] S. Lin et al., “Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke,” Small, vol. 16, no. 27, p. 1902123, Jul. 2020, doi: 10.1002/smll.201902123.
[56] M. G. Bonini, C. Rota, A. Tomasi, and R. P. Mason, “The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: A self-fulfilling prophesy,” Free Radical Biology and Medicine, vol. 40, no. 6, pp. 968–975, Mar. 2006, doi: 10.1016/j.freeradbiomed.2005.10.042.
[57] H.-F. Hung and C.-S. Wang, “Experimental determination of reactive oxygen species in Taipei aerosols,” Journal of Aerosol Science, vol. 32, no. 10, pp. 1201–1211, Oct. 2001, doi: 10.1016/S0021-8502(01)00051-9.
[58] J. Zhao and P. K. Hopke, “Concentration of Reactive Oxygen Species (ROS) in Mainstream and Sidestream Cigarette Smoke,” Aerosol Science and Technology, vol. 46, no. 2, pp. 191–197, Feb. 2012, doi: 10.1080/02786826.2011.617795.
[59] W. A. PRYOR and K. STONE, “Oxidants in Cigarette Smoke Radicals, Hydrogen Peroxide, Peroxynitrate, and Peroxynitrite,” Ann N Y Acad Sci, vol. 686, no. 1 Tobacco Smoki, pp. 12–27, May 1993, doi: 10.1111/j.1749-6632.1993.tb39148.x.
[60] D. F. Church and W. A. Pryor, “Free-radical chemistry of cigarette smoke and its toxicological implications.,” Environmental Health Perspectives, vol. 64, pp. 111–126, Dec. 1985, doi: 10.1289/ehp.8564111.
[61] T. Yoshitomi, K. Kuramochi, L. Binh Vong, and Y. Nagasaki, “Development of nitroxide radicals–containing polymer for scavenging reactive oxygen species from cigarette smoke,” Science and Technology of Advanced Materials, vol. 15, no. 3, p. 035002, Jun. 2014, doi: 10.1088/1468-6996/15/3/035002.
[62] Q. Liu et al., “Biochar Nanozyme from Silkworm Excrement for Scavenging Vapor-Phase Free Radicals in Cigarette Smoke,” ACS Applied Bio Materials, p. acsabm.1c01080, Dec. 2021, doi: 10.1021/acsabm.1c01080.
[63] V. K. LaMer and R. H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols,” J Am Chem Soc, vol. 72, no. 11, pp. 4847–4854, Nov. 1950, doi: 10.1021/ja01167a001.
[64] J. Guo et al., “Influence of Ionic Strength on the Deposition of Metal–Phenolic Networks,” Langmuir, vol. 33, no. 40, pp. 10616–10622, Oct. 2017, doi: 10.1021/acs.langmuir.7b02692.
[65] B. M. Y. and A. N. Y. S. M. Colak, “Determination of antimicrobial activity of tannic acid in pickling process,” Romanian Biotechnological Letters, pp. 5325–5330, 2010.
[66] J. M. Rifkind, Y. A. Shin, J. M. Heim, and G. L. Eichhorn, “Cooperative disordering of single-stranded polynucleotides through copper crosslinking,” Biopolymers, vol. 15, no. 10, pp. 1879–1902, Oct. 1976, doi: 10.1002/bip.1976.360151002.

無法下載圖示 全文公開日期 2025/08/22 (校內網路)
全文公開日期 2025/08/22 (校外網路)
全文公開日期 2025/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE