簡易檢索 / 詳目顯示

研究生: 蔡明哲
Ming-Zhe Cai
論文名稱: 圖騰柱功率因數修正器之研製
Design and Implementation of a Totem-Pole Power Factor Corrector
指導教授: 劉益華
Yi-Hua Liu
口試委員: 邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
楊宗振
Zong-Zhen Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 圖騰柱功率因數修正器連續導通模式數位控制零交越緩啟動控制
外文關鍵詞: Totem-pole power factor corrector, Continuous conduction mode, Digital control, Zero-crossing soft-start control
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研製一操作於連續導通模式之圖騰柱功率因數修正器,其輸出功率為600W、輸入電壓為交流110V、50Hz/60Hz、開關切換頻率100kHz、輸出電壓則為介於380V至430V之線上可調式電壓。本文針對圖騰柱功率因數修正器的動作原理與硬體架構設計進行詳細分析與探討並且加以實現。在控制方面採取數位控制,相較於傳統類比控制其主要優點為控制靈活性高。本文採用德州儀器公司所推出之TMS320F280049C做為本電路之控制核心,在研製電路過程中本文運用韌體實現零交越緩啟動控制法以改善輸入電流在零交越點產生之電流突波,並搭配調整正負半週之中斷觸發點與類比數位轉換器的取樣點,以及使用責任週期前饋技術降低輸入電流總諧波失真。最後由實驗結果得知,上述控制法可改善輕載至滿載之輸入電流總諧波失真與功率因數,且本電路之最佳輸入電流總諧波失真為2.27 %,當負載大於30%後功率因數皆可達0.99。


In this thesis, a totem-pole power factor corrector operating in continuous conduction mode is developed. The output power is 600W, the input voltage is AC 110V, 50Hz/60Hz, the switching frequency is 100kHz, and the adjustable output voltage is between 380V and 430V. In this thesis, the operating principle and hardware design of the totem-pole power factor corrector are firstly analyzed and discussed in detail and then implemented. In terms of control, digital control is adopted in this study. Compared with traditional analog control, its main advantage is high control flexibility. In this thesis, the TMS320F280049C introduced by Texas Instruments is used as the control core. This study uses the firmware to realize the zero-crossing soft-start control method to improve the current surge generated by the input current at the zero-crossing point. Combining the adjustment of interrupt trigger points of the positive and negative half cycle as well as the analog-to-digital converter sampling points with the usage of the duty cycle feedforward technique, the input current total harmonic distortion can be reduced. Finally, the experimental results show that the proposed control method can improve the input current total harmonic distortion and power factor from light load to full load, and the optimal input current total harmonic distortion of this circuit is 2.27 %. When the load is greater than 30%, the power factors are all above 0.99.

摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 文獻探討 2 1.4 章節概述 4 第二章 圖騰柱功率因數修正器之分析 6 2.1 圖騰柱功率因數修正器之架構 6 2.2 操作原理 6 第三章 硬體架構設計 14 3.1 電路規格及功率開關挑選 14 3.2 電路元件設計 15 3.2.1 輸入電感設計 15 3.2.2 輸出電容設計 15 3.3 感測電路設計 17 3.3.1 輸出電壓回授電路 17 3.3.2 交流輸入電壓回授電路 18 3.3.3 電感電流回授電路 20 3.4 零交越點檢測電路 21 3.5 過電流檢測電路 22 第四章 數位控制設計與實現 24 4.1 控制系統架構 24 4.2 數位訊號處理器簡介 25 4.3 系統程式設計 27 4.3.1 主程式 27 4.3.2 PWM中斷副程式 28 4.3.3 控制方法 30 4.4 零交越緩啟動控制 31 4.5 調校正負半週之中斷觸發點與ADC取樣點 36 4.6 輸出電壓緩啟動及線上可調式輸出電壓 39 4.6.1 輸出電壓緩啟動 39 4.6.2 線上可調式輸出電壓 40 第五章 實驗結果與分析 41 5.1 實驗平台 41 5.2 實驗波形量測 43 5.3 實驗結果分析與探討 47 第六章 結論與未來展望 53 6.1 結論 53 6.2 未來展望 53 參考文獻. 55

[1] B. Sun, “How to reduce current spikes at AC zero-crossing for totem-pole PFC,” Texas Instruments Analog Applications Journal (SLYT650), 4Q 2015.
[2] Wikipedia 80_PLUS [online]. Available: https://zh.wikipedia.org/wiki/80_PLUS
[3] Energy Star certified server [online]. Available: https://www.energystar.gov/products/data_center_equipment/enterprise_servers
[4] Wikipedia IEC 61000-3-2 [Online].Available: https://en.wikipedia.org/wiki/IEC_61000-3-2
[5] Kawaguchi, Yuki, et al. "Feasible evaluation of a full-bridge inverter for induction heating cooking appliances with discontinuous current mode PFC control." 2008 IEEE Power Electronics Specialists Conference. IEEE, 2008.
[6] Marvi, Mohammad, and Ali Fotowat-Ahmady. "A fully ZVS critical conduction mode boost PFC." IEEE transactions on power electronics 27.4 (2011): 1958-1965.
[7] Yao, Kai, et al. "Critical conduction mode boost PFC converter with fixed switching frequency control." IEEE Transactions on Power Electronics 33.8 (2017): 6845-6857.
[8] Olayiwola, A., et al. "Digital controller for a boost PFC converter in continuous conduction mode." 2006 1st IEEE Conference on Industrial Electronics and Applications. IEEE, 2006.
[9] Roggia, Leandro, et al. "Digital control system applied to a PFC boost converter operating in mixed conduction mode." 2009 Brazilian Power Electronics Conference. IEEE, 2009.
[10] Chen, Yie-Tone, Shin-Ming Shiu, and Ruey-Hsun Liang. "Analysis and design of a zero-voltage-switching and zero-current-switching interleaved boost converter." IEEE Transactions on Power Electronics 27.1 (2011): 161-173.
[11] Qiao, Chongming, and Keyue M. Smedley. "A topology survey of single-stage power factor corrector with a boost type input-current shaper." IEEE Transactions on Power Electronics 16.3 (2001): 360-368.
[12] Ghosh, Rajesh, and G. Narayanan. "A simple analog controller for single-phase half-bridge rectifier." IEEE transactions on power electronics 22.1 (2007): 186-198.
[13] Cho, Younghoon, and Jih-Sheng Lai. "Digital plug-in repetitive controller for single-phase bridgeless PFC converters." IEEE Transactions on Power Electronics 28.1 (2012): 165-175.
[14] Wang, Han, et al. "Theoretic analysis and experimental dissertation of a novel bridgeless partial active PFC." 2008 International Conference on Electrical Machines and Systems. IEEE, 2008.
[15] Marcos-Pastor, Adria, et al. "Loss-free resistor-based power factor correction using a semi-bridgeless boost rectifier in sliding-mode control." IEEE transactions on power electronics 30.10 (2014): 5842-5853.
[16] Musavi, Fariborz, Wilson Eberle, and William G. Dunford. "A phase shifted semi-bridgeless boost power factor corrected converter for plug in hybrid electric vehicle battery chargers." 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2011.
[17] Liu, Zhengyang, et al. "Digital-based interleaving control for GaN-based MHz CRM totem-pole PFC." IEEE Journal of Emerging and Selected Topics in Power Electronics 4.3 (2016): 808-814.12
[18] Zhou, Bo. CCM totem pole bridgeless PFC with ultra fast IGBT. Diss. Virginia Tech, 2014.12
[19] Kim, Jae-Hyun, Gun-Woo Moon, and Jae-Kuk Kim. "Zero-voltage-switching totem-pole bridgeless boost rectifier with reduced reverse-recovery problem for power factor correction." Proceedings of The 7th International Power Electronics and Motion Control Conference. Vol.2. IEEE, 2012.
[20] Z. Ye, A. Agular, Y. Bolurian and B. Daugherty, “GaN FET-Based CCM Totem-Pole Bridgeless PFC,” TI Power Supply Design Seminar (SLUP327), 2014.
[21] B. Sun, “Control challenges in a totem-pole PFC,” Texas Instruments Analog Applications Journal (SLYT718), 2Q 2017.
[22] Texas Instruments, “TMS320F28004x Piccolo TM Microcontrollers,” Available at: http://www.ti.com/.
[23] Van de Sype, David M., et al. "Duty-ratio feedforward for digitally controlled boost PFC converters." IEEE Transactions on Industrial Electronics 52.1 (2005): 108-115.
[24] Sam Abdel-Rahman and Eric Persson. “CoolGaN™ totem-pole PFC design guide and power loss modeling." Infineon Technologies AG 81726 Munich, Germany, 2019.
[25] 李宗磐,「1.5 kW伺服器前級電源功率因數修正之系統性能分析與改善」,國立交通大學電機與控制工程學系碩士論文,民國九十七年七月。
[26] Jason Zhang (Zhang Liang), Bill Luo (Luo Zhizheng) “Design Considerations of Digital Controlled Totem Pole PFC”
[27] “Totem-Pole Bridgeless PFC Design Using MC56F82748” NXP Semiconductors, Document Number: DRM174, 2016,11.

無法下載圖示 全文公開日期 2025/08/09 (校內網路)
全文公開日期 2027/08/09 (校外網路)
全文公開日期 2027/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE