簡易檢索 / 詳目顯示

研究生: 林育賢
Yu-Hsien Lin
論文名稱: 以靜電紡絲法製作聚氨基甲酸酯/氧化鋅纖維薄膜
The Fabrication of PU/ZnO Fibrous Membrane by Electrostatic Spinning
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 李俊毅
none
鄧道興
none
陳建宏
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 121
中文關鍵詞: 聚氨基甲酸酯氧化鋅靜電紡絲抗菌
外文關鍵詞: Antibiotic, Electrospinning, ZnO, PU
相關次數: 點閱:231下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係利用靜電紡絲技術製備具有纖維結構之聚氨基甲酸酯(Polyurethane, PU)薄膜。第一階段利用各種不同操作條件包括PU溶液濃度、操作電壓、紡絲距離,尋找最佳操作參數,結果得知高分子溶液20 wt%,操作電壓25 kV,紡絲距離12cm為最佳條件,所製得纖維薄膜之纖維平均直徑約在0.952μm。第二階段實驗在PU高分子溶液中添加不同比例(1, 3, 5, 7 wt%)之奈米氧化鋅粉體,利用最佳條件製得不同奈米ZnO粉體含量之PU/ ZnO纖維複合薄膜,以SEM觀察纖維平均細度約在0.952μm~1.241μm。以EDS對PU/ZnO纖維膜做元素分析,圖譜中出現Zn的元素特徵峰。以FTIR對PU/ZnO纖維膜做表面特徵官能基分析,發現添加ZnO並未出現新的官能基特性峰或是造成偏移現象,代表本研究屬於物理混掺。DSC與TGA熱性質分析結果,隨著ZnO粉體添加量的提升,熱裂解溫度也隨之降低。微相分離分析之結果顯示,添加ZnO粉體會使PU/ZnO纖維薄膜之微相分離下降。並且對PU/ZnO纖維膜做拉伸強度機械性質分析,發現隨著ZnO添加量的提高,使纖維薄膜由軟而韌之特性轉為硬而脆。抗UV測試結果證明出ZnO粉體確實能吸收UV光,當添加氧化鋅粉體後,PU/ZnO纖維薄膜在波長280nm至365nm之波段有明顯UV光的吸收,並且隨著添加量越多而吸收越多。對金黃色葡萄球菌之抑菌能力測試結果發現添加7wt%ZnO粉體,對金黃色葡萄球菌的抑菌效果達到82.9%。


In this study, electro spinning was applied to produce PU/ZnO fibrous membrane. The polymer fibrous membrane is affected by operating parameters while electro spinning. Obtain better quality of PU fibrous products were obtained, the first step of the research was to determine the optimum conditions of process. It showed that the PU fibrous of average diameter 0.952μm could be produced with conditions as 20 wt% polymer solution concentration, 25 kV operating voltage and 12cm capillary-screen distance. The second step of this experiment was to add ZnO powders into PU polymer solution to produce PU/ZnO composite fibrous membrane. The SEM was applied to investigate the morphology of fibrous membranes and the results showed that its average diameters were in the range of 0.952μm~1.241μm, The EDS results showed the featuring peak of Zn. In addition, from the data of FTIR, it could be concluded that neither new groups were made nor phenomenon of displacement was happened. The thermal properties were analyzed by DSC and TGA. The crystalline of PU polymer decreased once ZnO was added which was taken account of the low thermal collapse temperature. The mechanical properties of PU/ZnO fibrous membrane were investigated by Tensile Test. The experimental results showed that the mechanical properties were turned from the soft and tough of membrane into hard and brittle membrane with the increasing of ZnO concentration. The UV cut effect of PU/ZnO fibrous membrane observed once ZnO was added and increased with the increasing of ZnO concentration. The characteristic of inhibition of bacteria growth of PU fibrous membrane would be achieved by adding ZnO. From the experimental results, it showed that PU fibrous membrane containing7wt% ZnO could inhibit the growth of staphylococcus.

摘 要 i ABSTRACT iii 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 4 2.1 靜電紡絲 4 2.1.1 靜電紡絲之裝置 4 2.1.2 靜電紡絲針頭之尖端型態 5 2.1.3 靜電紡絲過程 7 2.1.4 電紡纖維膜形態影響因素 8 2.1.5 不同類型靜電紡絲設備之比較 12 2.2 關於聚氨基甲酸酯高分子材料 19 2.2.1 聚氨基甲酸酯之相關研究 19 2.2.2 聚氨基甲酸酯之原料與化學研究 19 2.2.3 聚氨基甲酸酯之相關性質 25 2.2.4 聚氨基甲酸酯的相分離型態 27 2.2.5 聚氨基甲酸酯之鑑定與應用 28 2.2.5.1 聚氨基甲酸酯之鑑定 28 2.2.5.2 聚氨基甲酸酯之應用 30 2.3 聚氨基甲酸酯之靜電紡絲 32 2.3.1 聚氨基甲酸酯之静電纺絲纖维應用領域 32 2.4 氧化鋅簡介 33 2.4.1 氧化鋅性質 33 2.4.2 奈米氧化鋅之應用 34 第三章 理論 36 3.1 靜電紡絲基本理論 36 3.1.1 臨界電位理論 36 3.1.2 靜電紡絲射流剖面分析 37 3.1.3 靜電紡絲鞭動理論 37 3.2 奈米氧化鋅抗菌理論 39 3.3 複合材料機械性質理論 40 3.3.1 拉伸強度理論 40 3.4 無機奈米粉體增韌理論 46 3.4.1 微觀力學機制分析 46 3.4.2 無機剛性粒子團模型 47 3.4.3 無機剛性粉體補強彈性體基材之機制 47 第四章 實驗 49 4.1 實驗材料 49 4.1.1 聚氨基甲酸酯PU(Polyurethane) 49 4.1.2 二甲基甲醯胺(N,N-Dimethylformamide) 49 4.1.3 氧化鋅 49 4.1.4 瓊脂 49 4.1.5 培養基 50 4.1.6 金黃色葡萄球菌 50 4.2 實驗設備及儀器 51 4.2.1 電子天秤 51 4.2.2 超音波震盪機 51 4.2.3 高壓直流電源供應器 52 4.2.4 注射幫浦 53 4.2.5 真空烘箱 54 4.2.6 真空泵浦 54 4.2.7 錐板流變儀 55 4.2.8 高解析掃描電子顯微鏡 56 4.2.9 反射式傅立葉轉換紅外線光譜儀 56 4.2.10 拉伸試驗機 57 4.2.11 熱示差掃描卡量計 58 4.2.12 熱重分析儀 59 4.2.13 紫外光可見光分光光度計 60 4.2.14 無菌操作台 61 4.2.15 高溫高壓滅菌釜 61 4.2.16 可調式恆溫震盪槽 62 4.2.17 低溫恆溫培養箱 63 4.3 實驗流程 64 4.3.1 以靜電紡絲法製作PU/ ZnO纖維膜之實驗流程圖 64 4.3.2 PU/ ZnO纖維薄膜之性質測試 65 4.4 實驗方法 66 4.4.1 聚氨基甲酸酯纖維膜之製備 66 4.4.2 聚氨基甲酸酯/氧化鋅纖維之製備 67 4.4.3 高分子溶液之總體拉伸黏度測試 68 4.4.4 聚氨基甲酸酯/氧化鋅高分子溶液之黏度測試 68 4.4.5 掃描式電子顯微鏡之拍攝 69 4.4.6 FTIR實驗鑑定分析 69 4.4.7 機械性質測試 70 4.4.7.1 拉伸強度測試 70 4.4.7.2 彈性回復性測試 71 4.4.8 熱重損失分析儀檢測 71 4.4.9 示差掃描熱量分析儀檢測 71 4.4.10 紫外線吸收測試 72 4.4.11抑菌能力測試 72 第五章 結果與討論 74 5.1 PU纖維薄膜之最佳條件 74 5.1.1 不同PU高分子溶液濃度與總體拉伸黏度之關係 74 5.1.2 改變高分子溶液濃度對PU纖維直徑之影響與表面形態分析 75 5.1.3電場強度與紡絲距離對靜電紡絲PU纖維直徑之影響 77 5.2 靜電紡絲PU/ZnO纖維薄膜 86 5.3 PU/ZnO纖維薄膜之基本性質分析 91 5.3.1 PU/ZnO纖維薄膜之FTIR分析 91 5.3.2 PU/ZnO纖維薄膜之EDS元素分析 94 5.4 PU/ZnO纖維薄膜之熱性質分析 96 5.4.1 PU/ZnO纖維薄膜之熱重損失分析 96 5.4.2 PU/ZnO纖維薄膜之DSC熱性質分析 98 5.5 PU/ZnO纖維薄膜之機械性質測試 100 5.5.1 改變奈米氧化鋅粉體添加量對PU/ZnO纖維薄膜拉伸性質之影響 100 5.5.2 改變奈米氧化鋅粉體添加量對PU/ZnO纖維薄膜微相分離之影響 102 5.5.3 改變奈米氧化鋅粉體添加量對PU/ZnO纖維薄膜拉伸回復性質之影響 103 5.6 PU/ZnO纖維薄膜之紫外線吸收測試 106 5.7 PU/ZnO纖維薄膜之抑菌能力測試 108 第六章 結論 111 參考文獻 115 建議 121

1. 劉耀中,以靜電紡絲法製作聚乳酸/氧化鋅奈米纖維薄膜,碩士學位論文,國立台北科技大學,有機高分子研究所,台北,2008。
2. 洪崇豪,以電紡絲製備彈性奈米SBS纖維膜,碩士學位論文,國立成功大學化學工程系,台南,2004。
3. Ditzel J.M., Kosik W., McKnight S.H., Ten N.C.B., Desimone J.M., Crette S., Electrospinning of polymer nanofibers with specific surface chemistry, Polymer 43(3), 2001, pp.1025-1029.
4. 張志純譯,PU製品之發展及應用,台北,徐氏基金會出版,p2~3,1978。
5. 吳大誠,杜仲良,高緒珊,奈米纖維,北京,化學工業出版社,2002,第126頁。
6. 黃政強,聚乙烯醇靜電紡絲研究-配方及程序之關鍵因子探討,碩士學位論文,國立台北科技大學,有機高分子研究所,2007。
7. 黃怡慧,以電紡絲製備聚羥基丁酸酯纖維,碩士學位論文,國立成功大學化學工程系,台南,2005。
8. 郭霈宸,電紡絲技術製備奈米纖維濾材之特性研究,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2009。
9. D.H. Reneker, W. Kataphinan, A. Theron, E. Zussman and A. L. Yarin, Nanofiber garlands of polycaprolactone by electrospinning, Polymer, 43, 2002, 6785-6794.
10. Yun K M, Hogan C J, Matsubayashi Y, Kawabe M, Iskandar F and Okuyama K, Nanoparticle filtration by eletrospun polymer fibers, Chemical Engineering Science, 62, 2007, 4751 – 4759.
11. J.M. Deitzel, J.D. Kleinmeyer, J.K. Hirvonen, and N.C. Beck Tan, Controlled deposition of eletrospun poly(ethylene oxide) fiber, Polymer, 42, 2001(B), 8163-8170.
12. 林健樺,以靜電紡絲製備聚苯乙烯纖維膜,碩士學位論文,成功大學,2004。
13. S-H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, Systematic parameter study for ultra-fine fiber fabrication via eletrospinning process, Polymer, 46, 2005, 6128-6134.
14. H. Fong, I. Chun, D. H. Reneker, Beaded nanofibers formed during electrospinning, Polymer, 40, 1999, 4585.
15. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, The change of bead morphology formed on electrospun polystyrene fibers, Polymer, 2003, 44, 4029.
16. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, 2002, 43, 4403.
17. A. Koski, K. Yim, S. Shivkumar, “Effect of molecular weight on fibrous PVA produced by electrospinning”, Materials Letters, 2004, 58, 493.
18. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process, Macromolecules 37, 2004, 573.
19. WETeo and S Ramakrishna, A reviewon electrospinning design and nanofibre assemblies, Nanotechnology 17, 2006, R89–R106.
20. O. Bayer, “The diisocyanate polyaddition process(polyurethanes). description of a new principle for building up high-molecular compounds”, Angewanate Chemie, A59,1937, pp.257
21. 羅蕙蕙, 我國PU樹脂應用市場與技術發展, 2003, 化學工業研究所應用化學組
22. Hepburn, C., “Polyurethane Eastomers” , Applied Science Publisher, London and New York ,1982, pp.3-6
23. Gnter Oertel, “Polyurethane Handbook”, Hanser Publisher, Munich Vienna New York, 1985
24. Frisch, F.C., “Polyurethane Technology”, Ed., Bruins, P.F., Interscience Publishers, New York, 1979, pp.1
25. Hepburn, C., “Polyurethane Elastomers” , Applied Science Publisher, London and New York ,1982, pp.290
26. T. K. Chen, T. S. Shieh, J. Y. Chui.“Studies on the first DSC endotherm of polyurethane hard segment based on 4. 4’-diphenylmethane diisocyanate and 1. 4-butanediol”, Macromolecules, 31, 1312, (1998).
27. R. W. Seymour, S. L. Cooper, “Thermal analysis of polyurethane block polymers”, Macromolecules, 6, 48, (1973).
28. C. P. Christenson, M. A. Harthcock, M. D. Meadows, H. L. Spell, W. L. Howard, M. W. Creswick, R. E. Guerra, R. B. Turner, “Model MDI/butanediol polurethanes : molecular structure, morphology, physical and mechanical properties, Jounal of Polymer Science: Part B: Polymer Physics, 24, 1401,(1986).
29. Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, B. Chu, “Multiphase Structure of a Segmented Polyurethane: Effects of Temperature and Annealing”, Macromolecules, 25, 7369,(1992).
30. 林建中著,”高分子材料性質與應用,二版修訂”,台北,高立圖書,2003,pp.88~91。
31. J. P. Silbilia, “A guide to materials characterization and chemical analysis, 2nd. Ed.”, Wiley-VCH, New York, p 261~266, (1996).
32. W. P. Yang, C. W. Macosko, S. T. Wellinghoff, “Thermal degradation of urethanes based on 4,4’-diphenylmethane diisocyanate and 1,4-butanediol(MDI/BDO)”, Polymer, 27, 1235, (1986).
33. Z. S. Petrovie, Z. Zavargo, J.H. Flyn, W. J. Macknight, “Thermal degradation of segmented polyurethanes”, Journal of Applied Polymer Science, 51, 1087, (1994).
34. C.B. Wang, S. L. Cooper, “Morphology and properties of segmented polyether polyurethaneureas”, Macromolecules, 16, 775, (1983).
35. J. A. Miller, S. BL Lin, K. S. Hwang, K. K. S. Wu, P. E. Gibson, S. L. Cooper, “Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution”, Macromolecules, 18, 32, (1985).
36. N. S. Schneider, R. W. Matton, “Thermal transition behavior of polybutadiene containing polyurethanes”, Polymer Engineering and Science, 19, 1122, (1979).
37. C. M. Brunette, S.L. Hsu, M. Rossman, W.J. Macknight, N.S. Schneider, “Structural and mechanical properties of polybutadiene-containing polyurethanes”, Polymer Engineering and Science, 21, 163, (1981).
38. T. A. Speckhard, P. E. Gibson, S.L Cooper, V. S. C. Chang, J. P. Kennedny, “Properties of polyisobutylene polyurethane block copolymers: 2. macroglycols produced nby the inifer technique”, Polymer, 26, 55, (1985).
39. S. B. Lin, K. K. S. Hwang, G. S. Wn , S. Y. Tsag, and S. L. Cooper , Material Science & Engineering, pp. 49-53, 1987.
40. 傅明源,孫酣經,聚氨酯彈性體及其應用,化學工業出版社,1991, pp.8~23。
41. 鄭智友,界面性質之量測及TPU之聚合反應與物性,碩士論文,東海大學,台中,1999。
42. D. J. Meier, ”Statistical thermodynamics of block copolymers:network statistics.”, Journal of Macromolecules Science Physics , 17, 181, 1980.
43. C.B. Wang, S.L. Cooper, “Morphology and properties of segmented polyether polyurethaneureas”, Macromolecules, Vol. 16, 1983, pp.775
44. K. Nakaama, T. Ino, I. Matsubara, “Organized polymerization Ⅲ. Monomers intercalated in montmorillonite”, Journal of polymer Science, Part B: Polymer Physics, 2, 1964 , pp.475
45. K. Nakayama, T. Ino, I. Matsubara, “Infrared spectra and structure of polyurethane elastomers from polytetrahydrofuran, diphenylmethane-4,4’-diisocyanate,and ethylenediamine.” Journal of Macromolecular Science. A, Chemistry, A3(5) , 1969, pp.1005
46. PU手冊,塑料世界雜誌社編印,2000,第27~35頁。。
47. 夏蘇,王政,楊荊泉,吳金輝,聚氨酯的靜電紡絲,合成纖維工業,2008,31(5)。
48. 李亦淇,生物可降解之左旋聚乳酸薄膜結構改變於生醫材料之應用,碩士,國立台灣大學醫學工程學研究所,台北,2002。
49. 陳秀連,以化學法製備均一粒徑氧化鋅粉體與發光特性之研究,碩士論文,國立台灣科技大學材料科技研究所,台北,2002。
50. Sekiguchi, Takashi, Ohashi, Naoki, Terada, Yoshihiro, “Effect of Hydrogenation on ZnO Luminescence,” Japanese Journal of Applied Physics, No.36, 1997, pp.289.
51. 陳宏軍,氧化鋅奈米粉末之製備與研究,碩士,大同大學材料工程研究所,台北,2004。
52. 陳世衛,氧化鋅高壓相變之研究,碩士,國立新竹師範學院自然科學教育學系,台北,2005。
53. 垰田博史,光觸媒圖解,台北,商周出版社,2003。
54. 呂宗昕,圖解奈米科技與光觸媒,台北,商周出版社,2003。
55. 蔡岳峻,有機高分子/負離子粉體複合材料功能與拉伸性質之研究,碩士論文,國立台北科技大學有機高分子研究所,台北,2005。
56. 王裕仁,水性聚氨基甲酸酯/負離子粉體複合薄膜功能性之研究,碩士論文,國立台北科技大學有機高分子研究所,台北,2007。
57. 王國全,聚合物與共混改性原理與應用,北京,中國輕工業出版社,2008。
58. 吳永剛,馬懿,李敬澤等,無機剛性粒子增韌PP的研究,中國塑料,1999 ,13(4):30~33。
59. American Association Textile Chemical Color Technical Manual.AATCC Test Method 100[S]55, 304-306.
60. 肖婉紅,曾詠春,靜電紡絲工藝參數對纖維直徑影響的研究:實驗及數值模擬,上海,東華大學學報(自然科學版),2009,35(6)。
61. http://www.jnjvisioncare.com/uv-damage-cnt1.jsp,2010/07
62. 張禕駿,聚氨基甲酸酯/散熱涼爽複合材料之合成與功能性質研究,碩士論文,國立台北科技大學有機高分子研究所,台北,2009。
63. 周紀宏,ABS/石墨複合材料功能及機械性質之研究,碩士論文,國立台灣科技大學高分子工程研究所,台北,2008。
64. 鍾鎔聲,熔融紡製聚氨基甲酸酯彈性纖維之硏究,碩士論文,國立台灣科技大學高分子工程研究所,台北,1994。

無法下載圖示 全文公開日期 2015/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE