簡易檢索 / 詳目顯示

研究生: 陳雅喬
Ya-Chiao Chen
論文名稱: 二氧化碳光催化還原薄膜反應器開發之研究
Research on Developed of CO2 Photoreduction Membrane Reactor
指導教授: 賴君義
Juin-Yih Lai
口試委員: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 84
中文關鍵詞: 薄膜反應器二氧化碳分離二氧化碳光催化反應光觸媒官能化氧化石墨烯二氧化鈦石墨烯
外文關鍵詞: membrane reactor, carbon dioxide separation, carbon dioxide photocatalytic reaction, photocatalyst, functionalized graphene oxide, titanium dioxide, graphene
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

空氣中二氧化碳轉換成有價物質,可以降低大氣中二氧化碳濃度、解決全球暖化問題,同時達到化石燃料的循環利用,因此本研究將開發一薄膜反應器應用於將空氣中的二氧化碳轉化為有價物質,研究重點為結合二氧化碳氣體分離層及光觸媒反應層製成一光觸媒複合薄膜反應器,應用於捕捉空氣中的二氧化碳同時將其做光催化還原反應,還原成含有CH4之氣體,達成碳循環之目的。

光催化複合薄膜選用對CO2選擇性佳的Polyimide(PI),CO2氣體分離層為摻有不同含量胺官能化GO(PEI-GO)的緻密結構,氣體反應層為摻有奈米TiO2(P25)光觸媒的多孔性雙連續結構。在氣體分離層加入0.1 wt% PEI-GO 後,可提供最適量CO2濃度給氣體反應層,透過端生成8.88 ppm 的CH4,於此條件的光觸媒複合薄膜氣體反應層中再摻入1.0 wt% graphene後,可有效抑制光誘導電子電洞對的再結合,進一步提升轉化效能生成11.1 ppm的CH4。

本研究以FTIR和ESCA確認PEI成功接枝在GO表面。由SEM、TMA和XRD結果可知,PEI-GO 比未改質GO可更均勻分散在PI基質中;XRD、PLAS和GPA結果可知,GO表面接枝PEI後所形成的位阻效應,會產生較多且大的自由體積,在 PI 基質中形成氣體較易通過的通道而提升氣體透過係數。SEM結果可確認反應層內部為多孔性雙連續結構;UV-Vis 結果可得知P25與graphene混摻後對薄膜之光吸收特性無顯著影響;PL結果證實加入graphene後可抑制光誘導電子電洞對再結合。


The conversion of carbon dioxide in the air into valuable substances can reduce the concentration of carbon dioxide in the atmosphere, solve the problem of global warming, and achieve the recycling of fossil fuels. Therefore, this research will develop a membrane reactor to convert carbon dioxide in the air into valuable substances. The focus of this work is to combine the carbon dioxide separation layer and the photocatalyst reaction layer to make a photocatalyst composite membrane, which is used to capture carbon dioxide in the air while doing a photocatalytic reduction reaction to reduce CO2 to CH4.

The CO2 separation layer is made of polyimide (PI) with good CO2 selectivity. The dense CO2 separation layer was doped with different contents of amine functionalized GO (PEI-GO). The photocatalyst reaction layer is PI doped with nano-TiO2 (P25) photocatalyst which was interconnected pore structure. After adding 0.1 wt% PEI-GO to the gas separation layer, the optimum CO2 concentration can be provided to the gas reaction layer, and 8.88 ppm of CH4 is generated at the permeation side. The photocatalyst composite membrane then mixed with 1.0 wt% graphene into photocatalyst reaction layer. After that, it can effectively inhibit the recombination of light-induced electron- hole pairs, and further improve the conversion efficiency to generate 11.1 ppm of CH4.

In this study, FTIR and ESCA confirmed that PEI was successfully grafted on the surface of GO. From the results of SEM, TMA and XRD, it can be seen that PEI-GO can be more uniformly dispersed in the PI matrix than unmodified GO. The results of XRD, PLAS and GPA show that the steric hindrance effect formed by the grafting of PEI on the surface of GO will produce larger interspacing between GO sheets. The gas can pass easily through larger interspacing and improves the gas permeability of gas separation layer. SEM results can confirm that the reaction layer has a porous bi-continuous structure. UV-Vis results show that the blending of P25 and graphene has no significant effect on the light absorption characteristics of the membrane. PL results confirm that the addition of graphene into reaction layer can inhibit the recombination of photo-induced electron and hole pairs.

摘要 .................................................. I ABSTRACT ............................................. III 致謝 .................................................. V 目錄 .................................................. VII 表目錄 ................................................. X 圖目錄 ................................................. XI 第一章 緒論.............................................. 1 1.1 前言 ............................................... 1 1.2 薄膜概述 ........................................... 2 1.2.1 薄膜分離機制 ...................................... 3 1.2.2 薄膜製備常用的材料 ................................. 4 1.2.3 薄膜分類 .......................................... 5 1.2.4 薄膜製備方法 ...................................... 5 1.3 氣體分離薄膜 ........................................ 7 1.3.1 氣體分離薄膜的類型及應用 ............................ 7 1.3.2 氣體分離薄膜的傳輸機制 .............................. 8 1.4 二維材料 ............................................ 12 1.4.1 石墨烯 ............................................ 12 1.4.2 氧化石墨烯及其衍生物 ................................ 13 1.5 光觸媒之二氧化碳還原 .................................. 15 1.6 文獻回顧 ............................................ 17 1.7 研究動機及目的 ....................................... 24 第二章 研究方法與步驟 ..................................... 27 2.1 實驗流程圖 .......................................... 27 2.2 實驗藥品與儀器設備 .................................... 28 2.2.1 實驗藥品 .......................................... 28 2.2.2 實驗儀器設備 ....................................... 28 2.3 實驗方法 ............................................ 30 2.3.1 氣體分離薄膜之製備 .................................. 30 2.3.2 光觸媒複合薄膜之製備 ................................ 31 2.3.3 鑑定儀器 .......................................... 32 2.4 薄膜反應器之二氧化碳光催化還原實驗流程 ................... 38 第三章 結果與討論...........................................40 3.1 合成 PEI-GO 鑑定 ..................................... 40 3.1.1 FTIR與ESCA分析 .................................... 40 3.1.2 XRD分析 ........................................... 42 3.2 氣體分離薄膜鑑定與效能 ................................. 44 3.2.1 薄膜之SEM型態鑑定 ................................... 44 3.2.2 GO 添加對 PI 分子鏈運動性之影響 ....................... 45 3.2.3 GO 添加對 PI 薄膜 d-spacing 及自由體積之影響 .......... 45 3.2.4 薄膜的氣體分離效能 ................................... 49 3.3 光觸媒複合薄膜鑑定與效能 ................................ 52 3.3.1 複合薄膜光觸媒反應層型態鑑定 ........................... 52 3.3.2 石墨烯添加對P25光催化特性之影響 ........................ 52 3.3.3 光觸媒複合薄膜之CO2還原效能 ........................... 55 3.3.4 光觸媒複合薄膜穩定度測試 .............................. 58 第四章 結論 ............................................... 64 第五章 參考文獻 ............................................ 65

1. H.K. Lonsdale, The growth of membrane technology. Journal of Membrane Science, 1982. 10(2-3): p. 81-181.
2. 賴君義, 薄膜科技概論. 2019: 五南圖書出版股份有限公司.
3. A. Lee, J.W. Elam, and S.B. Darling, Membrane materials for water purification: design, development, and application. Environmental Science: Water Research & Technology, 2016. 2(1): p. 17-42.
4. M. Mulder and J. Mulder, Basic principles of membrane technology. 1996: Springer Science & Business Media.
5. Pratibha Pandey, R.S. Chanhan, Membranes for gas separation. Progress in Polymer Science, 2001. 26(6): p. 853-893.
6. L. Shao, et al., Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 2009. 327(1): p. 18-31.
7. J. Huang, J. Zou, and W.W. Ho, Carbon dioxide capture using a CO2- selective facilitated transport membrane. Industrial & Engineering Chemistry Research, 2008. 47(4): p. 1261-1267.
8. C. Huo, et al., 2D materials via liquid exfoliation: a review on fabrication and applications. Science Bulletin, 2015. 60(23): p. 1994-2008.
9. V.B. Mohan, et al., Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 2018. 142: p. 200-220.
10. M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2010. 110(1): p. 132-145.
11. S. Eigler and A. Hirsch, Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angewandte Chemie International Edition, 2014. 53(30): p. 7720-7738.
12. W. Gao, et al., New insights into the structure and reduction of graphite oxide. Nature Chemistry, 2009. 1(5): p. 403-408.
13. A. Lerf, et al., Structure of Graphite Oxide Revisited. The Journal of Physical Chemistry B, 1998. 102(23): p. 4477-4482.
14. W. Yu, et al., Progress in the functional modification of graphene/graphene oxide: a review. RSC Advances, 2020. 10(26): p. 15328-15345.
15. A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.

16. J. Low, B. Cheng, and J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied
Surface Science, 2017. 392: p. 658-686.
17. Y. Rambabu, et al., Photocatalytic reduction of carbon dioxide using
graphene oxide wrapped TiO2 nanotubes. Applied Surface Science, 2019.
485: p. 48-55.
18. F. Xu, et al., 1D/2D TiO2/MoS2 Hybrid Nanostructures for Enhanced
Photocatalytic CO2 Reduction. Advanced Optical Materials, 2018. 6(23):
p. 1800911.
19. J. Yu, Y. Hai, and B. Cheng, Enhanced Photocatalytic H2-Production
Activity of TiO2 by Ni(OH)2 Cluster Modification. The Journal of
Physical Chemistry C, 2011. 115(11): p. 4953-4958.
20. F. Zhang, et al., Boosting the activity and stability of Ag-Cu2O/ZnO
nanorods for photocatalytic CO2 reduction. Applied Catalysis B:
Environmental, 2020. 268: p. 118380.
21. G. Liu, et al., Phosphorous doped g-C3N4 supported cobalt
phthalocyanine: An efficient photocatalyst for reduction of CO2 under visible-light irradiation. Journal of Colloid and Interface Science, 2021. 594: p. 658-668.
22. Y. Yan, et al., Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO2 Reduction. ACS Nano, 2018. 12(4): p. 3523-3532.
23. H. Wang, et al., Solar-heating boosted catalytic reduction of CO2 under full-solar spectrum. Chinese Journal of Catalysis, 2020. 41(1): p. 131- 139.
24. A. Gallo, et al., Ni5Ga3 catalysts for CO2 reduction to methanol: Exploring the role of Ga surface oxidation/reduction on catalytic activity. Applied Catalysis B: Environmental, 2020. 267: p. 118369.
25. L.-L. Tan, et al., Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chemical Engineering Journal, 2017. 308: p. 248-255.
26. S. Yu, et al., Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Letters, 2018. 18(4): p. 2189-2194.
27. J. Yu, et al., Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts. Physical Chemistry Chemical Physics, 2014. 16(23): p. 11492-11501.
28. A. Meng, et al., Hierarchical TiO2/Ni(OH)2 composite fibers with
enhanced photocatalytic CO2 reduction performance. Journal of
Materials Chemistry A, 2018. 6(11): p. 4729-4736.
29. F.R. Pomilla, et al., CO2 to Liquid Fuels: Photocatalytic Conversion in a
Continuous Membrane Reactor. ACS Sustainable Chemistry &
Engineering, 2018. 6(7): p. 8743-8753.
30. K. Yuan, et al., Performance analysis of photocatalytic CO2 reduction in
optical fiber monolith reactor with multiple inverse lights. Energy
Conversion and Management, 2014. 81: p. 98-105.
31. A.A. Khan and M. Tahir, Recent advancements in engineering approach
towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels. Journal of CO2 Utilization, 2019. 29: p. 205-239.
32. Y. Bo, C. Gao, and Y. Xiong, Recent advances in engineering active sites for photocatalytic CO2 reduction. Nanoscale, 2020. 12(23): p. 12196- 12209.
33. R. Wang, et al., Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 2009. 169(1): p. 926-932.
34. G.S. Shephard, et al., Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Research, 2002. 36(1): p. 140-146.
35. C.S. Ong, et al., Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process. Desalination, 2014. 353: p. 48-56.
36. R.A. Damodar, S.-J. You, and S.-H. Ou, Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Separation and Purification Technology, 2010. 76(1): p. 64-71.
37. A. Miyawaki, S. Taira, and F. Shiraishi, Performance of continuous stirred-tank reactors connected in series as a photocatalytic reactor system. Chemical Engineering Journal, 2016. 286: p. 594-601.
38. T. Tsuru, et al., A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes. Catalysis Today, 2003. 82(1): p. 41-48.
39. G. Vincent, P.M. Marquaire, and O. Zahraa, Abatement of volatile organic compounds using an annular photocatalytic reactor: Study of gaseous acetone. Journal of Photochemistry and Photobiology A: Chemistry, 2008. 197(2): p. 177-189.
40. Q.J. Geng, et al., Investigation into Photocatalytic Degradation of Gaseous Benzene in a Circulated Photocatalytic Reactor (CPCR). Chemical Engineering & Technology, 2008. 31(7): p. 1023-1030.
41. N. Blommaerts, et al., Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation. Chemical Engineering Journal, 2017. 316: p. 850-856.
42. J. Wu, et al., Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2. Applied Catalysis B: Environmental, 2015. 176-177: p. 559-569.
43. C.C. Lo, et al., Photoreduction of carbon dioxide with H2 and H2O over
TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy
Materials and Solar Cells, 2007. 91(19): p. 1765-1774.
44. M. Tahir and N.S. Amin, Photocatalytic CO2 reduction and kinetic study
over In/TiO2 nanoparticles supported microchannel monolith
photoreactor. Applied Catalysis A: General, 2013. 467: p. 483-496.
45. Z. Xiong, et al., Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Applied Catalysis B: Environmental,
2017. 219: p. 412-424.
46. E. Pipelzadeh, et al., Photoreduction of CO2 on ZIF-8/TiO2
nanocomposites in a gaseous photoreactor under pressure swing.
Applied Catalysis B: Environmental, 2017. 218: p. 672-678.
47. A. Brunetti, et al., CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels.
Applied Catalysis B: Environmental, 2019. 255: p. 117779.
48. P. Usubharatana, et al., Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & engineering
chemistry research, 2006. 45(8): p. 2558-2568.
49. R.I. Bickley, et al., A structural investigation of titanium dioxide
photocatalysts. Journal of Solid State Chemistry, 1991. 92(1): p. 178-190.
50. L. Liu, et al., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis
B: Environmental, 2013. 134-135: p. 349-358.
51. Ş. Neaţu, et al., Gold–Copper Nanoalloys Supported on TiO2 as
Photocatalysts for CO2 Reduction by Water. Journal of the American Chemical Society, 2014. 136(45): p. 15969-15976.
52. W.N. Wang, et al., Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals. Journal of the American Chemical Society, 2012. 134(27): p. 11276-11281.
53. Y.T. Liang, et al., Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2 for Improved Solar Fuel Production. Nano Letters, 2011. 11(7): p. 2865-2870.
54. J. Liu, et al., Photocatalytic reduction of CO2 using TiO2-graphene nanocomposites. J. Nanomaterials, 2016. 2016: p. Article 1.
55. L.C. Sim, et al., Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2. Applied Surface Science, 2015. 358: p. 122-129.
56. G.J. Shin, K. Rhee, and S.J. Park, Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. International Journal of Hydrogen Energy, 2016. 41(32): p. 14351-14359.
57. B.S. Ge, et al., Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO2 separation. Polymers for Advanced Technologies, 2018. 29(4): p. 1334-1343.
58. Y. Shen, et al., Enhanced Performance of a Novel Polyvinyl Amine/Chitosan/Graphene Oxide Mixed Matrix Membrane for CO2 Capture. ACS Sustainable Chemistry & Engineering, 2015. 3(8): p. 1819-1829.
59. B. Liu, et al., Enhanced CO2 selectivity of polyimide membranes through dispersion of polyethyleneimine decorated UiO-66 particles. Journal of Applied Polymer Science, 2020. 137(36): p. 49068.
60. S. Nasir, et al., Potential Valorization of By-product Materials from Oil Palm: A review of Alternative and Sustainable Carbon Sources for Carbon-based Nanomaterials Synthesis. Bioresources, 2018. 14.
61. W. Shao, et al., Fabrication of pH-sensitive thin-film nanocomposite nanofiltration membranes with enhanced performance by incorporating amine-functionalized graphene oxide. Applied Surface Science, 2019. 487: p. 1209-1221.
62. Y. He, et al., One-step fabrication of PEI-modified GO particles for CO2 capture. Applied Physics A, 2019. 125(3): p. 160.
63. Z. Fan, et al., Polyethylenimine-Modified Graphene Oxide as a Novel Antibacterial Agent and Its Synergistic Effect with Daptomycin for Methicillin-Resistant Staphylococcus aureus. ACS Applied Nano Materials, 2018. 1(4): p. 1811-1818.
64. R. Aghehrochaboki, et al., Polyethyleneimine functionalized graphene oxide/methyldiethanolamine nanofluid: Preparation, characterization, and investigation of CO2 absorption. Journal of Environmental Chemical Engineering, 2019. 7(5): p. 103285.
65. K. Sainath, A. Modi, and J. Bellare, CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance. Chemical Engineering Journal Advances, 2021. 5: p. 100074.
66. A. Akbari, J. Karimi-Sabet, and S.M. Ghoreishi, Matrimid® 5218 based mixed matrix membranes containing metal organic frameworks (MOFs) for helium separation. Chemical Engineering and Processing - Process Intensification, 2020. 148: p. 107804.
67. C. Wang, et al., Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties. Applied Surface Science, 2016. 362: p. 11- 19.
68. X. Li, et al., Efficient CO2 Capture by Functionalized Graphene Oxide Nanosheets as Fillers To Fabricate Multi-Permselective Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2015. 7(9): p. 5528- 5537.
69. Z.F. Wang, et al., Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons. Polymer, 2005. 46(3): p. 719-724.
70. S. Mondal, J.L. Hu, and Z. Yong, Free volume and water vapor permeability of dense segmented polyurethane membrane. Journal of Membrane Science, 2006. 280(1): p. 427-432.
71. E.L. Cussler, et al., Barrier membranes. Journal of Membrane Science, 1988. 38(2): p. 161-174.
72. A. Ibrahim and Y.S. Lin, Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. Journal of Membrane Science, 2018. 550: p. 238-245.
73. H. Ha, et al., Gas permeation and selectivity of poly(dimethylsiloxane)/graphene oxide composite elastomer membranes. Journal of Membrane Science, 2016. 518: p. 131-140.
74. H.W. Kim, et al., Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013. 342(6154): p. 91-95.
75. J.C. Yu, et al., Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chemistry of Materials, 2002. 14(9): p. 3808-3816.
76. P. Rani and V. Jindal, Designing band gap of graphene by B and N dopant
atoms. Rsc Advances, 2013. 3(3): p. 802-812.
77. J. Yang, et al., A comparative study on the photocatalytic behavior of
graphene-TiO2 nanostructures: Effect of TiO2 dimensionality on interfacial charge transfer. Chemical Engineering Journal, 2018. 334: p. 907-921.
78. J. Wu, et al., CO2 Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 2017. 4(11): p. 1700194.
79. N.T. Padmanabhan, et al., Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 2021. 271: p. 129506.
80. N. Sasirekha, S.J.S. Basha, and K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 2006. 62(1): p. 169-180.
81. Y. Li, et al., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 2010. 100(1): p. 386-392.
82. Y.Y. Maruo, T. Yamada, and M. Tsuda, Reactivity of CO2 and H2O on TiO2 catalysts studied by gas phase FT-IR method and deactivation mechanism. Journal of Physics: Conference Series, 2012. 379: p. 012036.
83. L.L. Tan, et al., Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Applied Catalysis B: Environmental, 2015. 179: p. 160-170.
84. W. Tu, et al., An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2 into Methane and Ethane. Advanced Functional Materials, 2013. 23(14): p. 1743-1749.
85. M.A.L.R.M. Cortes, et al., Formal quantum efficiencies for the photocatalytic reduction of CO2 in a gas phase batch reactor. Catalysis Today, 2019. 326: p. 75-81.
86. Y. Wang, et al., High efficiency photocatalytic conversion of CO2 with H2O over Pt/TiO2 nanoparticles. RSC Advances, 2014. 4(84): p. 44442- 44451.
87. A. Razzaq, et al., Efficient solar light photoreduction of CO2 to hydrocarbon fuels via magnesiothermally reduced TiO2 photocatalyst. Applied Catalysis B: Environmental, 2017. 215: p. 28-35.

無法下載圖示 全文公開日期 2024/08/18 (校內網路)
全文公開日期 2024/08/18 (校外網路)
全文公開日期 2024/08/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE