簡易檢索 / 詳目顯示

研究生: 陳星嶧
Hsing-Yi Chen
論文名稱: 針對椎弓足螺絲暨骨水泥擴張術之拉出強度參數化及靈敏度探討:有限元素分析
Parametric and sensitivity studies for pullout strength of pedicle screws with injection of bone cement : A finite element analysis.
指導教授: 徐慶琪
Ching-Chi Hsu
趙振綱
Ching-Kong Chao
口試委員: 徐錫靖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 113
中文關鍵詞: 骨質疏鬆椎體成型術氣球椎體成型術骨水泥穿孔式椎弓根螺釘
外文關鍵詞: Osteoporosis, Vertebroplasty, Balloon Kyphoplasty, Bone cement, Cannulated and perforated pedicle screw
相關次數: 點閱:226下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當病人的骨質密度很低時,椎弓根螺釘(椎弓足螺絲)的咬合能力會大幅的降低,同時也提高鬆脫的風險性。近來已經有研究將椎體成型術(Vertebroplasty)或氣球椎體成型術(Balloon Kyphoplasty) 與椎弓根螺釘結合達到增加螺絲咬合能力的效果。目前為止,尚未有文獻以有限元素分析的方式,探討骨螺絲與不同骨水泥的大小及位置所得到的拉出強度。本文將利用有限元素分析建立一套模擬骨螺絲骨水泥拉出強度的方法論,並與先前的文獻結果比對驗證本研究之可信度。
    於有限元素分析中,吾人先進行脊椎CT影像的量測得到椎體相關尺寸,再經由這些椎體尺寸,設計分析模擬的幾何尺寸。以ANSYS建立三維有限元素分析的模型,包含鬆質骨、硬質骨、骨螺絲、骨水泥。模型建立後則進行參數化分析及靈敏度分析,探討於不同情況下的最大骨水泥拉出強度位置是否相同。其主要的模型分為椎體考慮鬆質骨且螺絲為平滑螺絲、椎體考慮硬質骨且螺絲為平滑螺絲、椎體考慮鬆質骨且螺絲為有螺紋等三種情況下進行探討。
    從分析的結果中,發現鬆質骨的楊氏係數及骨頭的大小,在研究中是非常重要的參數。未來若以人造假骨進行穿孔骨螺絲骨水泥擴張術的機械測試,其固定端面積沒有大於骨水泥大小時,必須避免骨水泥位置過於靠近固定端。最後,與先前的文獻結果比較後,本研究之骨螺絲包含骨水泥拉出強度模型,是一套準確度高且可信任的方法論。


    Due to very low BMD (Bone mineral density), it is a challenge to fix pedicle screw on osteoporotic spine, therefore the risk of screw loosening will increase. Recently, there are some studies using Vertebroplasty and Balloon Kyphoplasty to increase strength of pedicle screw fixation. However, using Finite Element Analysis (FEA) method to simulate the pullout strength of pedicle screw with bone cement augmentation has not been established. Hence the purpose of this study is creating a Finite Element Analysis methodology to simulate the pullout strength of pedicle screw with bone cement augmentation, and then compare with the previous studies in order to prove our methodology being reliable.
    In finite element analysis, we measure the vertebral body dimensions from CT-scan imagine first, and then we will design our finite element model using the imagine data. The ANSYS software is used to create our 3-D finite element model. The model includes cancellous bone, cortical bone, pedicle screw, and bone cement. After creating finite element model, we do the parametric and sensitivity analysis to make sure that the maximum bone cement pullout position is the same or not under different boundary conditions. The finite element model study is divided into three parts, first we consider smooth screw and only cancellous bone, second we consider smooth screw and cancellous bone with cortical bone, third we consider screw with thread and only cancellous bone.
    According the FEA result, there are two important parameters that can affect the pullout strength obviously in our study. First is the young’s modulus of cancellous bone and second is the bone size. If we will do the mechanical test in the future, the bone cement is suggested should not very close to constrained side. Finally, we compare our simulation result with the previous result. It shows that Finite Element Model for the pullout strength of pedicle screw with bone cement augmentation is a feasible and reliable methodology.

    中文摘要 I ABSTRACT II 誌 謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1研究動機與目的 1 1.2脊椎解剖與構造 5 1.3骨質疏鬆椎體之病灶及治療方法 8 1.3.1骨質疏鬆椎體之病灶 8 1.3.2治療方法 11 1.4多孔式椎弓根螺釘簡介 12 1.5文獻回顧 13 1.6本文架構 21 第二章 材料與方法 22 2.1研究方法簡介 22 2.2椎體影像量測及尺寸設計 25 2.2.1電腦斷層掃描影像 25 2.2.2影像量測 29 2.2.3量測結果 33 2.2.4 椎弓足寬度量測與螺絲尺寸探討 37 2.2.5椎體與骨水泥分佈幾何尺寸探討 38 2.2.6幾何尺寸設計 39 2.3 材料簡介 40 2.3.1人造假骨簡介 40 2.3.2 骨水泥簡介 42 2.4有限元素法簡介 45 2.5有限元素模型建立 46 2.6收斂性分析 52 2.7參數化分析 53 2.8靈敏度分析 53 2.8.1不同外型骨頭 54 2.8.2 不同拉出位移量 55 2.8.3不同骨水泥楊係係數 55 2.8.4不同鬆質骨楊氏係數 55 2.8.5不同骨頭尺寸大小 55 2.8.6不同骨水泥大小 56 2.8.7考慮有無硬質骨影響 56 2.8.8考慮有無螺紋之影響 57 2.9考慮不同位置及不同骨水泥大小 61 第三章 結果 63 3.1收斂性分析 63 3.2參數化分析 64 3.3靈敏度分析 66 3.3.1不同外型骨頭 66 3.3.2 不同拉出位移量 66 3.3.3不同骨水泥楊氏係數 67 3.3.4不同鬆質骨楊氏係數 67 3.3.5不同骨頭大小尺寸 68 3.3.6不同骨水泥大小 69 3.3.7考慮有無硬質骨之影響 69 3.3.8考慮有無螺紋之影響 71 3.4考慮不同位置不同骨水泥大小 83 第四章 綜合討論 87 4.1參數化分析結果趨勢探討 87 4.2靈敏度分析 89 4.2.1不同鬆質骨楊氏係數 89 4.2.2不同骨頭大小尺寸 90 4.2.3考慮有無硬質骨之影響 92 4.2.4考慮有無螺紋之影響 93 4.3考慮不同位置不同骨水泥的大小 95 4.4考慮不同固定端面積的大小 99 第五章 結論與未來展望 106 5.1結論 106 5.2未來展望 107 參考文獻 108 作者簡介 114

    [1] Dougherty, G., "Quantitative CT in the measurement of bone quantity and bone quality for assessing osteoporosis," Medical Engineering and Physics, vol. 18, pp. 557-568, (1996).
    [2] Werner, H. J., H. Martin, D. Behrend, K. P. Schmitz, and H. C. Schober, "The loss of stiffness as osteoporosis progresses," Medical Engineering and Physics, vol. 18, pp. 601-606, (1996).
    [3] Thomas, P. A., "Racial and ethnic differences in osteoporosis," Journal of the American Academy of Orthopaedic Surgeons, vol. 15, (2007).
    [4] Acharya, S., A. Srivastava, and I. B. Sen, "Osteoporosis in Indian women aged 40-60 years," Archives of Osteoporosis, pp. 1-7, (2010).
    [5] Becker, S., A. Chavanne, R. Spitaler, K. Kropik, N. Aigner, M. Ogon, and H. Redl, "Assessment of different screw augmentation techniques and screw designs in osteoporotic spines," European Spine Journal, vol. 17, pp. 1462-1469, (2008).
    [6] Center, J. R., T. V. Nguyen, D. Schneider, P. N. Sambrook, and J. A. Eisman, "Mortality after all major types of osteoporotic fracture in men and women: An observational study," Lancet, vol. 353, pp. 878-882, (1999).
    [7] Suzuki, T., "Risk factors for osteoporosis in Asia," Journal of Bone and Mineral Metabolism, vol. 19, pp. 133-141, (2001).
    [8] Heini, P. F., "The current treatment - A survey of osteoporotic fracture treatment. Osteoporotic spine fractures: The spine surgeon's perspective," Osteoporosis International, vol. 16, (2005).
    [9] Halvorson, T. L., L. A. Kelley, K. A. Thomas, T. S. Whitecloud Iii, and S. D. Cook, "Effects of bone mineral density on pedicle screw fixation," Spine, vol. 19, pp. 2415-2420, (1994).
    [10] Hadjipavlou, A. G., C. L. Nicodemus, F. A. Al-Hamdan, J. W. Simmons, and M. H. Pope, "Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct," Journal of Spinal Disorders, vol. 10, pp. 12-19, (1997).
    [11] Wittenberg, R. H., M. Shea, D. E. Swartz, K. S. Lee, A. A. White Iii, and W. C. Hayes, "Importance of bone mineral density in instrumented spine fusions," Spine, vol. 16, pp. 647-652, (1991).
    [12] McKinley, T. O., R. F. McLain, S. A. Yerby, N. Sarigul-Klijn, and T. S. Smith, "The effect of pedicle morphometry on pedicle screw loading: A synthetic model," Spine, vol. 22, pp. 246-252, (1997).
    [13] Gardner, M. J., M. H. Griffith, D. Demetrakopoulos, R. H. Brophy, A. Grose, D. L. Helfet, and D. G. Lorich, "Hybrid locked plating of osteoporotic fractures of the humerus," Journal of Bone and Joint Surgery - Series A, vol. 88, pp. 1962-1967, (2006).
    [14] Yánez, A., J. A. Carta, and G. Garcés, "Biomechanical evaluation of a new system to improve screw fixation in osteoporotic bones," Medical Engineering and Physics, (2010).
    [15] Wittenberg, R. H., K. S. Lee, M. Shea, A. A. White Iii, and W. C. Hayes, "Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength," Clinical Orthopaedics and Related Research, pp. 278-287, (1993).
    [16] Abshire, B. B., R. F. McLain, A. Valdevit, and H. E. Kambic, "Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out," Spine Journal, vol. 1, pp. 408-414, (2001).
    [17] Hsu, C. C., C. K. Chao, J. L. Wang, S. M. Hou, Y. T. Tsai, and J. Lin, "Increase of pullout strength of spinal pedicle screws with conical core: Biomechanical tests and finite element analyses," Journal of Orthopaedic Research, vol. 23, pp. 788-794, (2005).
    [18] Chen, L. H., C. L. Tai, P. L. Lai, D. M. Lee, T. T. Tsai, T. S. Fu, C. C. Niu, and W. J. Chen, "Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: Influences of radial hole and pilot hole tapping," Clinical Biomechanics, vol. 24, pp. 613-618, (2009).
    [19] Chang, M. C., C. L. Liu, and T. H. Chen, "Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: A novel technique," Spine, vol. 33, (2008).
    [20] Moore, D. C., R. S. Maitra, L. A. Farjo, G. P. Graziano, and S. A. Goldstein, "Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement," Spine, vol. 22, pp. 1696-1705, (1997).
    [21] Renner, S. M., T. H. Lim, W. J. Kim, L. Katolik, H. S. An, and G. B. Andersson, "Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method," Spine, vol. 29, (2004).
    [22] Sarzier, J. S., A. J. Evans, and D. W. Cahill, "Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines," Journal of Neurosurgery, vol. 96, pp. 309-312, (2002).
    [23] Dunne, N. J. and J. F. Orr, "Flow characteristics of curing polymethyl methacrylate bone cement," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 212, pp. 199-207, (1998).
    [24] Farrar, D. F. and J. Rose, "Rheological properties of PMMA bone cements during curing," Biomaterials, vol. 22, pp. 3005-3013, (2001).
    [25] K˝UHN, K.-D., "The well-cemented total hip arthroplasty: theory and practice," Springer, Berlin Heidelberg, p. 52, (2000).
    [26] Frankel, B. M., T. Jones, and C. Wang, "Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: A clinical evaluation," Neurosurgery, vol. 61, pp. 531-537, (2007).
    [27] Lonstein, J. E., F. Denis, J. H. Perra, M. R. Pinto, M. D. Smith, and R. B. Winter, "Complications associated with pedicle screws," Journal of Bone and Joint Surgery - Series A, vol. 81, pp. 1519-1528, (1999).
    [28] Linhardt, O., C. Lüring, J. Matussek, C. Hamberger, W. Plitz, and J. Grifka, "Stability of pedicle screws after kyphoplasty augmentation: An experimental study to coMPare transpedicular screw fixation in soft and cured kyphoplasty cement," Journal of Spinal Disorders and Techniques, vol. 19, pp. 87-91, (2006).
    [29] Takigawa, T., M. Tanaka, H. Konishi, H. Ikuma, H. Misawa, Y. Sugimoto, K. Nakanishi, K. Kuramoto, K. Nishida, and T. Ozaki, "CoMParative biomechanical analysis of an improved novel pedicle screw with sheath and bone cement," Journal of Spinal Disorders and Techniques, vol. 20, pp. 462-467, (2007).
    [30] Cook, S. D., S. L. Salkeld, T. Stanley, A. Faciane, and S. D. Miller, "Biomechanical study of pedicle screw fixation in severely osteoporotic bone," Spine Journal, vol. 4, pp. 402-408, (2004).
    [31] Soshi, S., R. Shiba, H. Kondo, and K. Murota, "An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine," Spine, vol. 16, pp. 1335-1341, (1991).
    [32] Bohner, M., B. Gasser, G. Baroud, and P. Heini, "Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure," Biomaterials, vol. 24, pp. 2721-2730, (2003).
    [33] Burval, D. J., R. F. McLain, R. Milks, and S. Inceoglu, "Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: Biomechanical analysis of pedicle fixation strength," Spine, vol. 32, pp. 1077-1083, (2007).
    [34] Hyeun Sung Kim, M. D., M. D. In Ho Park, M. D. Jae Kwang Ryu, M. D. Seok Won Kim, and M. D. Ho Shin, "Bone Cement Augmentation of Pedicular Screwing in Severe Osteoporotic Spondylolisthetic Patients," J Korean Neurosurg Soc, vol. 42, pp. 6-10, (2007).
    [35] Fransen, P., "Increasing pedicle screw anchoring in the osteoporotic spine by cement injection through the implant: Technical note and report of three cases," Journal of Neurosurgery: Spine, vol. 7, pp. 366-369, (2007).
    [36] Loeffel, M., S. J. Ferguson, L. P. Nolte, and J. H. Kowal, "Vertebroplasty: Experimental characterization of polymethylmethacrylate bone cement spreading as a function of viscosity, bone porosity, and flow rate," Spine, vol. 33, pp. 1352-1359, (2008).
    [37] Andreas Boger, M. B., Paul Heini, Sophie Verrier,Erich Schneider, "Properties of an Injectable Low Modulus PMMA Bone Cement for Osteoporotic Bone," Wiley InterScience, vol. Appl Biomater 86B, pp. 474–482, (2008).
    [38] Lattig, F., "Bone cement augmentation in the prevention of adjacent segment failure after multilevel adult deformity fusion," Journal of Spinal Disorders and Techniques, vol. 22, pp. 439-443, (2009).
    [39] Blattert, T. R., S. Glasmacher, H. J. Riesner, and C. Josten, "Revision characteristics of cement-augmented, cannulated-fenestrated pedicle screws in the osteoporotic vertebral body: A biomechanical in vitro investigation. Technical note," Journal of Neurosurgery: Spine, vol. 11, pp. 23-27, (2009).
    [40] Waits, C., D. Burton, and T. McIff, "Cement augmentation of pedicle screw fixation using novel cannulated cement insertion device," Spine, vol. 34, (2009).
    [41] 孫施盛, "退化性關節炎與骨質疏鬆性股骨頭之生物力學性質分析," 陽明大學醫學工程係碩士論文, (民國91年(2002)).
    [42] Teo, J., S. C. Wang, and S. H. Teoh, "Preliminary study on biomechanics of vertebroplasty: A computational fluid dynamics and solid mechanics combined approach," Spine, vol. 32, pp. 1320-1328, (2007).
    [43] Polikeit, A., L. P. Nolte, and S. J. Ferguson, "The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis," Spine, vol. 28, pp. 991-996, (2003).
    [44] 國際厚生健康園區, "http://www.24drs.com/Illustrated_Guides/."
    [45] Ji-Hoon Her, S.-H. K., "Pedicle screw and device for injecting bone cement into bone," Patent No:US 2007/0299450 A1, (Date of Patent: Dec. 27,2007).
    [46] James L. Chappius, M., GA(US), "Fenestrated surgical screw and method," Patent No:US 6,565,572, B2 (Date of Patent: May. 20,2003).
    [47] Chunfeng Zhao, B. L. C., Kai-Nan An, Fredrick Schultz, Patricia Neale, "Expandable screw apparatus and method thereof," Patent No:US 6,668,688, B2 (Date of Patent: Dec. 30,2003).
    [48] Schultheiss, M., L. Claes, H. J. Wilke, L. Kinzl, and E. Hartwig, "Enhanced primary stability through additional cementable cannulated rescue screw for anterior thoracolumbar plate application," Journal of Neurosurgery, vol. 98, pp. 50-55, (2003).
    [49] Moulton, D. A., "http://www.andrewmoultonmd.com/index.php."
    [50] 長庚醫療財團法人, "http://www.cgmh.org.tw/."
    [51] Hirano, T., K. Hasegawa, H. E. Takahashi, S. Uchiyama, T. Hara, T. Washio, T. Sugiura, M. Yokaichiya, and M. Ikeda, "Structural characteristics of the pedicle and its role in screw stability," Spine, vol. 22, pp. 2504-2510, (1997).
    [52] EmpowHER, http://www.empowher.com/media/reference/osteoporosis.
    [53] Benzel, E. C. "Biomechanical of spine stablization." American Association of Neurological Surgeons, Illinois: pp.1-17. (2001).
    [54] Center, C. M. http://www.cjwmedical.com/default.asp.
    [55] SAWBONES http://www.sawbones.com/.

    QR CODE