簡易檢索 / 詳目顯示

研究生: 王皓練
Hao-Lian Wang
論文名稱: 16x25Gb/s單模光傳收模組的高速電路板優化與傳輸效能驗證
Refinement of High-Speed Circuit Board for 16x25 Gb/s Single-Mode Optical Transceivers and Transmission Performance Verification
指導教授: 李三良
San-Liang Lee
口試委員: 曹恆偉
Hen-Wai Tsao
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 105
中文關鍵詞: 光傳收模組單模光纖高速電路板設計
外文關鍵詞: Optical Transceiver, Single Mode Fiber, High-Speed Circuit Board
相關次數: 點閱:394下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本論文設計製作應用於雲端資料中心高速光連結的400 Gb/s光傳收模組,此模組採用四波長、四光纖及單通道25 Gb/s的資料率來達成傳送400 Gb/s的目標。光傳收模組運用傳輸晶片與接收晶片並搭配高速外調雷射光源及檢光器,配置在自行設計的高速電路板,可以達成符合規範的16"×" 25 Gb/s光傳收模組。
  因應高速傳輸通訊的需求,如何增加通道頻寬與資料量已成為研發技術的重點。對於光纖通訊在資料中心的應用,在100Gb/s光傳輸模組商業化之後,開始往400Gb/s 光傳輸模組發展。本論文成功設計16"×" 25 Gb/s光傳收模組,並優化傳輸25 Gb/s不歸零編碼訊號的高速電路。本論文探討的核心技術為設計同時具有傳輸、接收晶片的高速印刷電路板。採用介質損耗小的基板,搭配差動訊號傳輸線來減少共模雜訊,並搭配電磁軟體模擬傳輸線之S參數與眼圖,以模擬優化傳輸線上電路的阻抗匹配,並以實際量測結果驗證。最後利用傳收模組的驅動晶片傳輸26.81 Gb/s NRZ訊號,量測此模組於單模光纖中傳輸至10公里時,仍能達成所有通道在光功率-13 dBm以上皆有誤碼率優於10-12的效能。


  This work successfully designs and manufactures a 400-Gb/s optical transceiver module for high-speed optical interconnect in the cloud data centers. The 400-Gb/s module is constructed with 16-channel transceivers that are allocated with 4 wavelengths and 4 single-mode fibers. It includes EML driver ICs, receiver ICs, high-speed EML sources, and photodetectors.
  Increasing the channel bandwidth and data rates is the main focus of research and development to meet the demand of high-speed optical transmission and interconnect. For data center applications, soon after the 100Gb/s optical transceivers were commercialized, 400Gb/s transceivers became the hottest topic for most fiber-optic vendors. This thesis successfully designed and enhanced the 16"×" 25 Gb/s optical transceiver module for 25 Gb/s NRZ signals. The high-speed circuit board uses a substrate with low dielectric loss. The differential transmission line is realized to reduce common mode noise. The high-frequency circuit simulation software is used to design and optimize the transmission lines and circuits. The simulated S-parameter and eye diagram are verified with the measurement results. The EML driver IC is used to generate the 25Gb/s NRZ signal, and the whole transceiver module is measured to transmit the signal along a single mode fiber for up to 10 km. Each channel can achieve <10-12 bit error rate with an optical power >-13 dBm.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 3 1.4 論文架構 9 第二章 調變訊號及光傳收模組介紹 10 2.1 前言 10 2.2 400Gb/s乙太網路介紹 10 2.3 訊號調變方式 12 2.3.1 不歸零編碼訊號調變訊號介紹 12 2.4 光傳收模組元件介紹 13 2.4.1 直調雷射與外調雷射比較 15 2.4.2 4"×" 25 Gb/s光傳輸次模組 17 2.4.3 傳輸驅動晶片與接收晶片 20 2.4.4 4"×" 25 Gb/s光接收次模組 24 2.5 前向錯誤更正碼技術 27 2.6 CFP規格下之光傳收器 29 第三章 高速電路板設計及模擬 31 3.1 前言 31 3.2 高頻電路板傳輸線 31 3.2.1 單端傳輸線(Single-Ended Transmission Line) 35 3.2.2 差動傳輸線(Differential Transmission Line) 36 3.3 高頻印刷板疊構設計 38 3.4 高頻電路板布局及模擬結果 41 3.4.1 差動傳輸線阻抗設計 41 3.4.2 高頻電路板布局 42 3.4.3 差動傳輸線訊號模擬 43 第四章 光傳收模組量測與分析 53 4.1 前言 53 4.2 四通道外調雷射特性量測 54 4.3 傳輸系統量測與分析 57 4.3.1 傳輸系統光訊號眼圖量測與分析 59 4.3.2 傳輸系統電訊號眼圖量測與分析 67 4.3.3 傳輸系統誤碼率量測與分析 74 第五章 結論 81 5.1 成果 81 5.2 未來工作 83 5.2.1光傳收模組電路板頻寬優化 83 5.2.2 400Gb/s光傳收模組 83

A. Armstrong. Ethernet Alliance Continues Ethernet Advancement. Retrieved December 25, 2018, from
https://www.storagereview.com/ethernet_alliance_continues_ethernet_advancement
C. Cole, “100-Gb/s and beyond Ethernet optical interfaces,” OECC 2010 Technical Digest, Sapporo, JP, 2010
T. Tatsumi, K. Tanaka, S. Sawada, H. Naito, H. Onishi, H. Fujita, A. Ugai, T. Abe, “Development of Electro-Absorption Modulator Driver ICs for 25G/40G Transmission,” Sei Technical Review, no. 74, 2012, pp. 1-3
M. R. Ahmadi et al., “A 5 Gbps 0.13μm CMOS Pilot-Based Clock and Data Recovery Scheme for High-Speed Links,” IEEE Journal of Solid-State Circuits, vol. 45, no. 8, 2010, pp.1533 - 1541
K. Maeda, T. Norimatsu, K. Kogo, N. Kohmu, K. Nishimura and I. Fukasaku, “An Active Copper-Cable Supporting 56-Gbit/s PAM4 and 28-Gbit/s NRZ with Continuous Time Linear Equalizer IC for 10-meters Reach Interconnection,” 2018 IEEE Symposium on VLSI Circuits, 2018
陳力維,「100 Gb/s SR4 多模光纖光收發模組」,國立高雄應用科技大學碩士論文,2015
A. Sain, and K. L. Melde, “Impact of Ground via Placement in Grounded,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.6, no.1, 2016, pp. 136 - 144
IEEE 802.3 ETHERNET WORKING GROUP. IEEE P802.3bs. Retrieved December 25, 2018, from http://www.ieee802.org/3/
C. Cole, J. J. Maki, A. Srivastava, P. Stassar, “400Gb/s 2km & 10km duplex SMF PAM-4 PMD Baseline Specifications” 400 Gb/s Ethernet Task Force IEEE 802.3 Interim Meeting, 2015
K. Nagai, H. Wada, “40Gb/s EA Modulator,” OKI Technical Review, 2002, pp. 2-3
J. Wei, Q. Cheng, R. V. Penty, I. H. White, D. G. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Communications Magazine, vol. 53, no. 2, 2015, pp. 182-189
吳奇璋,「分佈反饋式雷射與行波式電致吸收調變器積體化元件製作」,國立台灣科技大學碩士論文,2010, pp.2-5
陳育祥,「一個適用於多頻帶快速鎖定的突發式時脈與資料回復電路」,國立交通大學碩士論文,2010, pp.1-2
S. Palermo(2017).High-Speed Links Circuits and Systems. Retrieved December 25, 2018, from http://www.ece.tamu.edu/~spalermo/ecen720.html
J. C. Palais, Fiber Optic Communication, "4" ^"th" ed Prentice-Hall, 1998
A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications,” IEEE Circuits Dev. Mag., Vol. 22, No. 6, 2006, pp. 79–86
K. Seki, K. Mikami, A. Katayama, S. Suzuki, N. Shinohara, and M. Nakabayashi, “Single-chip FEC codec using a concatenated BCH code for 10Gbps LH optical transmission systems,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003, pp. 279–282
CFP MSA(2017). Retrieved January 17, 2019, from http://www.cfp-msa.org/index.html
Nikola T. (March 4, 2013). Retrieved January 17, 2019, from
http://www.bitweenie.com/listings/microstrip-vs-stripline/
M. Bailey (Sep 14, 2011). Retrieved January 17, 2019, from https://www.eeweb.com/app-notes/layout-guidelines-for-rf-and-mixed-signal-pcbs
J. Ardizzoni, “A Practical Guide to High-Speed Printed Circuit Board Layout”, Analog Devices
Murata Manufacturing Co., Ltd. Retrieved January 17, 2019, from
https://www.murata.com/~/media/webrenewal/support/library/catalog/products/emc/emifil/c31e.ashx
E. Sackinger, “Broadband Circuits for Optical Fiber Communication”, Wiley, 2005
AH Speed, “Understanding Data Eye Diagram Methodology for Analyzing High Speed Digital Signals”, Semiconductor Components Industries, LLC, 2015
Maxim Integrated, “Extinction Ratio and Power Penalty”, Application Note HFAN-2.2.0, 2001
江晉哲,「設計具等化器的高速光接收模組的電路板」,國立台灣科技大學碩士論文,2018
王伶綺,「以單通道傳送25 Gb/s和56 Gb/s組成400 Gb/s單模光傳輸模組的高速電路板設計」,國立台灣科技大學碩士論文,2018
S. Sinha, R. Doerner, F. J. Schmückle, S. Monayakul, M. Hrobak, N. G. Weimann, V. Krozer, W. Heinrich, “Flip-Chip Approach for 500 GHz Broadband Interconnects,” IEEE Microwave Theory and Techniques Society, 2017

QR CODE