簡易檢索 / 詳目顯示

研究生: 劉侑昌
Yu-Chang Liu
論文名稱: 千億位元率乙太網路光傳收模組規劃暨軟性印刷電路板設計製作
Realization of 100G/s Ethernet Optical Transceiver with Flexible Printed Circuit Board Design
指導教授: 李三良
San-Liang Lee 
施天從
Tien-Tsorng Shih
口試委員: 曾昭雄
Chao-Hsiung Tseng
周一鳴
E-Min Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 光纖通訊軟性印刷電路板光傳收模組乙太網路
外文關鍵詞: Fiber Optical Communication, Flexible Printed Circuit Board, Optical Transceiver, Ethernet
相關次數: 點閱:334下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於乙太網路的頻寬需求快速成長,本篇論文設計製作整合光次模組,高頻測試板以及時脈資料回復器的軟性印刷電路板與高速印刷電路板,並規劃100GBASE-LR4 光傳送接收模組之雛形。此外也對4×25G 光傳收模組,進行初步的量測。藉由實作與模擬來設計軟性印刷電路板及高速印刷電路板。在高速印刷電路板上除了利用差動訊號傳輸線來達到減少共模雜訊,傳輸線設計使用更高頻的基板。利用軟性印刷電路板達到可折撓、立體配線及提升系統的配線密度等優點來連接光次模組與高速印刷電路板,也在接合點上的優化來達到頻寬可達25 GHz 以上的傳輸線。量測上眼形圖信雜比可達10,對接量測到誤碼率最好可至10-13以下,經過20 公里傳輸仍可達10-3以下。並藉由多功器與解多功器可完成單條光纖傳輸100 Gb/s。可做為未來發展100 G 甚至400 G 光傳收
    模組之雛形。


    This thesis focuses on the design and realization of flexible printed circuit boards and high-speed printed circuit boards to integrate the optical subassembly (OAS), high-speed testing fixture, and the clock data
    recovery circuits. The layout of the prototype of 100GBASE-LR4 optical
    transceiver modules and the measurements for the 4X25G optical
    transceiver module are also presented. After deliberate design and verification with simulations, we have successful realized the flexible printed circuit boards and high-speed printed circuit board. The designs of the circuit boards incorporate not only differential transmission lines to reduce common mode noise, but also high-frequency substrates to enhance the frequency response of the transmission line. The flexible printed circuit boards allow foldable and flexible assembly as well as to improve the three-dimensional wiring density in connecting an OSA and the high-speed printed circuit board. With these designs, we have improved the interface between our flexible printed circuit boards and the high-speed printed circuit boards to achieve a bandwidth greater than 25 GHz. The measurement results show the signal-to-noise ratio of up to 10. Back-to-back connection with our module yields a bit error below 10-13. After transmitting along 20-km single mode fiber, the bit error rate can be below 10-3. After wavelength multiplexing and de-multiplexing, we have realized an optical transceiver prototype capable of transmitting 100Gb/s data with 4 wavelength channels. This work lays a framework for realizing 100Gb/s and future 400Gb/s transceiver modules.

    目錄 摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 第一章 導論 1.1 前言 1.2 研究動機 1.2.1 100G 乙太網路簡介 1.2.2 軟性印刷電路板應用於光傳收模組 1.3 文獻探討 1.4 論文架構 第二章 光傳收模組元件及板材介紹 2.1 軟性電路板介紹 2.1.1 軟板材料組成 2.1.2 軟板結構 2.2 高速印刷電路板 2.3 光傳收模組元件介紹 2.3.1 4×25 Gb/s 電致吸收調變光傳輸次模組簡介 2.3.2 4×25 Gb/s 光接收次模組 2.3.3 時脈資料回復器與驅動器 第三章 傳輸線模擬與分析 3.1 差動式結構探討 3.2 傳輸線探討 3.3 傳輸線設計及模擬 3.3.1 軟性印刷電路板傳輸線設計 3.3.2 高速印刷電路板傳輸線設計 3.3.3 接合點設計 3.3.4 連接器選擇 3.3.5 高頻電路板佈局及模擬結果 第四章 光傳輸模組元件量測與分析 4.1 軟硬板結合特性量測 4.2 EML TOSA 眼圖量測 4.2.1 TOSA W/O CDR 4.2.2 TOSA W/ CDR 4.2.3 TOSA W/ Fiber 4.3 EML ROSA 眼圖量測 4.4 誤碼率量測 第五章 結論 5.1 成果 5.2 未來工作 參考文獻

    1] http://www.ieee802.org/3/ae/
    [2] http://www.ieee802.org/3/ba/
    [3] http://www.ieee802.org/3/bs/
    [4] http://www.ieee802.org/3/
    [5] D. D. Evans , ”Active Optical Cable transceiver packaging trends and
    die bonding case studies,” Semiconductor Technology International
    Conference (CSTIC), 15-16 March 2015
    [6] T. Uesugi, N. Okada, T. Saito, T. Yamatoya, Y. Morita, and A.
    Sugitatsu, “25 Gb/s EML TOSA Employing Novel
    Impedance-Matched FPC Design,” European Conference and
    Exhibition on Optical Communications (ECOC), 20-24 September
    2009
    [7] T. Yagisawa, T. Ikeuchi, “Compact 40-Gb/s EML Module Using
    Broadband FPC Connection Technique,” IEEE Optical Fiber
    Communication (OFC), collocated National Fiber Optic Engineers
    Conference, 21-25 March 2010
    [8] N. Ohata ; K. Uto ; T. Fukao ; T. Hatta ; H. Aruga, “A Compact 44.6
    Gb/s 1.55-μm EML TOSA Employing Three-layer FPC,”2013 18th
    OptoElectronics and Communications Conference held jointly with
    2013 International Conference on Photonics in Switching
    (OECC/PS), 30 June – 4 July 2013
    [9] M. Shirao, N. Ohata, N. Yasui, K. Uto, T. Fukao, T. Hatta, H. Aruga,
    and T. Mizuochi, “A 1.55 μm 40 Gb/s EML TOSA Employing a
    80
    Novel FPC Connection,” IEEE Lightwave Technology, Oct.1, 1 2014
    [10] T. Uesugi, Norio Okada, Takeshi Saito, Takeshi Yamatoya,
    Yoshimichi Morita, and A. Sugitatsu, “25 Gb/s EML TOSA
    Employing Novel Impedance-Matched FPC Design,” 35th European
    Conference Optical Communication, ECOC '09.Sept
    [11] T. Uesugi, N. Okada, T. Saito, T. Yamatoya, Y. Morita, and A.
    Sugitatsu, “25 Gb/s EML TOSA Employing Novel
    Impedance-Matched FPC Design,” 35th European Conference
    Optical Communication, ECOC '09.Sept
    [12] 吳承穎,「高頻軟板及焊點之最佳化設計」,國立高雄應用科技
    大學碩士論文,2015
    [13] 林定皓,「軟性電路板技術介紹」,台灣電路板協會,民國104 年
    [14] 陳力維,「100 Gb/s SR4 多模光纖光收發模組」,國立高雄應用科
    技大學碩士論文,2015
    [15] H. Lee and K. Noville, Handbook of Epoxy Resins, McGraw-Hill
    Inc., New York, 1982.
    [16] 吳奇璋,「分佈反饋式雷射與行波式電致吸收調變器積體化元件
    製作」,國立台灣科技大學碩士論文,2010
    [17] JC. Palais, Fiber Optic Communication, 4th ed Prentice-Hall,
    January 1998.
    [18] 蘇德龍,「百億位元乙太網路光傳收模組之研製」,國立台灣科
    技大學碩士論文,2003
    81
    [19] B. Razavi, “Challenges in the design high-speed clock and data
    recovery circuits,” IEEE Communications Magazine (volume:40 ,
    issue: 8 ), Aug 2002
    [20] National Semiconductor’s “Transmission Line RAPIDESIGNER
    Operation and Applications Guide,” Application Note 905.
    [21] D.M Pozar, Microwave Engineering 2nd, Wiley, 1998.

    QR CODE