簡易檢索 / 詳目顯示

研究生: 陳宥任
Yu-Jen Chen
論文名稱: 矽含量與濾渣作業對銲接結構用鑄鋼件低溫韌性的影響
The Effect of Silicon Contents and Filtration on Low Temperature Toughness of Welded Structure Steel Castings
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 雷添壽
Tien-Shou Lei
李驊登
Hwa-Teng Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 72
中文關鍵詞: 鑄鋼低溫韌性過濾網矽含量
外文關鍵詞: steel casting, silicon content, filter, low temperature toughness
相關次數: 點閱:226下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討的矽含量與濾渣作業對於銲接結構用鑄鋼件SCW450低溫衝擊韌性的影響。實驗用鑄鋼件的矽含量分為0.4、0.6、0.8% 配合氧化鋯過濾網、碳基過濾網、與無濾渣網的交互方式進行鑄鋼件的澆鑄,試片分為鑄態與正常化熱處理方式兩種,試片於0℃的低溫做沙丕沖擊試驗,並對破斷面型態與顯微結構加以分析。研究結果顯示鑄鋼件0.6% 矽含量加上過濾網與880℃ 保溫3小時的正常化熱處理有最佳的衝擊值;另一個重要的結果是鑄鋼件含錳量提高時,亦有助於低溫衝擊值的提升。


In this experiment, the effect of different silicon content and filtration system on zero degree Celsius notch toughness of welded structure steel castings, SCW 450, is investigated. The notch toughness specimen were prepared with three filter systems, with ZrO2 filter, carbon bonded filter, and no filter, and with silicon content of 0.4%, 0.6%, and 0.8%. As casted and normalization, specimen were tested with notch toughness and the fracture surfaces and microstructure were studied. The final result showed the normalized, filtered and silicon content with 0.6% specimen had best notch toughness; also increase manganese content for the steel castings could increase the notch toughness as well.

摘要.............................................................................................................I Abstract......................................................................................................II 致謝..........................................................................................................III Contents.....................................................................................................V Table Contents..........................................................................................VI Figure Contents.......................................................................................VII Chapter One Introduction...........................................................................1 Chapter Two Literatures Review................................................................2 2.1 Grades of Steel Casting Suitable for Fusion Welding.................2 2.2 Heat Treatments..........................................................................6 2.3 Effects of Alloying Elements in the Steel Castings..................11 2.4 Deoxidation Agent for the Steel Castings.................................18 2.5 Inclusions in the Steel Castings................................................19 2.6 Notch Toughness.......................................................................20 2.7 Filtration....................................................................................27 Chapter Three Experimental Procedures..................................................29 3.1 Material Preparation.................................................................30 3.2 Heat Treatment..........................................................................33 3.3 Charpy-V Notch Toughness Test..............................................33 3.4 Hardness Test............................................................................34 3.5 Microstructure Analysis............................................................34 Chapter Four Results and Discussion.......................................................35 4.1 Specimen Nomenclature...........................................................35 4.2 Effect of Filtration on Notch Toughness...................................36 4.3 Effect of Silicon Content on Notch Toughness........................37 4.4 Effect of Manganese Content on Notch Toughness..................40 4.5 Microstructures.........................................................................40 4.6 Fracture Topography.................................................................41 Chapter Five Conclusions.........................................................................62 Reference..................................................................................................63 Appendix A Collections of OM Micrographies........................................68

[1] JIS G 5102, "Steel Casting for Welded Structure," Japanese Standards Association (1991)
[2] ASTM A 216, "Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service," American Society for Testing and Materials (1998)
[3] Michel Bruneau, "Ductile Design of Steel Structures," McGraw Hill Professional, pp. 31, 1998
[4] V. B. Ginzburg and R. Ballas, "Flat Rolling Fundamental," Taylor & Francis, pp.141-142 (2000)
[5] Website : www.substech.com
[6] William F. Smith, "Structure and Properties of Engineering Alloys," 2nd Ed., McGraw-Hill Inc., pp. 1-81(1993)
[7] 黃振賢,「金屬熱處理」,文京圖書有限公司,第101~144頁,西元1998年。
[8] 楊國和主編、等,「鋼鐵合金鑄造」,鑄造手冊第二冊,中華民國鑄造學會,第275~328頁,西元1998年。
[9] Thomas L. Stevens, "General Properties of Steel Castings," Steel Castings Handbook, Supplement 5, Steel Founders’ Society of America, pp. 3. (1995)
[10] Donald R. Askeland and Pradeep P. Phule, "The Science and Engineering of Materials," Fifth Edition, Nelson, pp. 476 (2006)
[11] G. J. Roe and the ASM Committee, "Notch Toughness of Steels," Metal Handbook 9th ed. Vol. 1 Properties and Selection: Irons and steels ASM, pp. 689-709 (1978)
[12] D. Krishnaraj and S. Seshan, "Structure and Properties of ADI as Effected by Low Alloy Additions," AFS Trans., Vol.100, pp. 105-112 (1992)
[13] 陳興時、黃瀛真、洪敏雄、吳正棕,「矽含量與鑄件大小對肥粒鐵系球墨鑄鐵機械性質的影響」,鑄工,第33期,第1~11頁,西元1982年。
[14] A.M. Elwazri, P. Wanjara, S. Yue, “The Effect of Microstructural Characteristics of Pearlite on the Mechanical Properties of Hypereutectoid Stee,” Materials Science and Engineering A 404, pp. 91-98 (2005)
[15] 姚正耀,「鑄鋼」,鑄造手冊第二卷,機械工業出版社,第11~55頁,西元2002年。
[16] H. Najafi, J. Rassizadehghani, S. Norouzi, "Mechanical Properties of As-Cast Microalloyed Steels Produced via Investment Casting," Material and Design 32, pp. 656-663 (2011)
[17] Z. Fan, "The Grain Size Dependence of Ductile Fracture Toughness of Polycrystalline Metals and Alloys," Materials Science and Engineering A 191, pp. 73-83, 1995
[18] ASTM E23, "Standard Test Methods for Notched Bar Impact Testing of Metallic Materials," American Society of Testing and Materials (2000)
[19] K. W. Burns and F.B. Pickering, "Deformation and Fracture of Ferrite-Pearlite Structures," Journal of the Iron and Steel Institute, Vol. 202 (No.11), pp 899-906 (1964)
[20] C. Vishnevsky and E.A. Steigerwald, "Influence of Alloying Elements on the Toughness of Low-Alloy Martensitic High-Strength Steels," AMMRC Cr-80-09(F), Army Materials and Mechanics Research Center, Watertown, Massachusetts (1968)
[21] The ASM Review Committee, "Steel Castings," Metal Handbook 9th ed. Vol. 1 Properties and Selection: Irons and steels ASM, pp. 377-402 (1978)
[22] A. Seshu Kumar et al, "Effect of Microstructure and Grain Size on the Fracture Toughness of a Micro-Alloy Steel," Materials Science and Engineering A 527, pp. 954-960 (2010)
[23] 洪祝寶,「銲接構造用鑄鋼SCW450 低溫衝擊韌性之研究」,碩士論文,國立台灣科技大學,西元2011年。
[24] 林永祥,「銲接構造用鑄鋼SCW450 雙相區熱處理之低溫衝擊韌性之研究」,碩士論文,國立台灣科技大學,西元2012年。
[25] A. M. Elwazri, P. Wanjara, S. Yue, "The Effect of Microstructual Characteristics of Pearlite on the Mechanical Properties of Hypereutectoid Steel," Materials Science and Egnineering A 404, pp. 91-98 ( 2005)
[26] K. K. Ray and D. Mondal, "The Effect of Interlamellar Spacing on Strength of Pearlite in Annealed Eutectoid and Hypoeutectoid Plain Carbon Steels," Acta Metall. Mater. Vol. 39, pp. 2201-2208 (1991)
[27] F. G. Caballero, C. Garcia de Andres, C. Capdevila, "Characterization and Morphological Analysis of Pearlite in a Eutectoid Steel," Materials Characterization 45, pp. 111-1169 (2000)
[28] B. Karlsson and G. Linden, "Plastic Deformation of Ferrite-Pearlite Structure in Steel," Materials Science and Engineering 17, pp. 209-219 (1975)
[29] F. M. Al-Abbasi, "Predicting the Deformation Behavior of Ferrite-Pearlite Steels Using Micro Mechanical Modeling of Cells," Mechanics of Materials, vol. 63, pp.48-64 (2013)
[30] B. Garbarz, F. B. Pickering, "Effect of Pearlite Morphology on Impact Toughness of Eutectoid Steel Containing Vanadium," Materials Science and Technology Vol 4, pp. 328-333 (1988)
[31] Chunfang Wang et al, "Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel," J. Mater. Sci. Technol., Vol.23 No.5, pp. 659-664 (2007)
[32] L. Ceschini, A. Marconi, C. Martini, A. Morri, A. Di Schino, "Tensile and Impact Behaviour of a Microalloyed Medium Carbon Steel: Effect of the Cooling Condition and Corresponding Microstructure," Materials and Design 45, pp. 171-178 (2013)
[33] Warren M. Garrison Jr., Andrzej L. Wojcieszynski, "A discussion of the Effect of Inclusion Volume Fraction on the Toughness of Steel," Materials Science and Engineering A 464, pp. 321-329 (2007)
[34] J. R. Brown, "Filter and the Running and Gating of Steel Castings," Foseco Ferrous Foundryman's Handbook Ed.11 Chp. 18, Foseco (2000)
[35] M Emmel, C. G. Aneziris, "Developement of Novel Carbon Bonded Filter Compositions for Steel Melt Filteration," Ceramics International 38, pp.5465-5173 (2012)
[36] J. Morris and L. Strom, "Reduced Oxide Formation Simply by Reducting the Reynolds Number with Reticulated Ceramics," Hi-Tech Ceramics (1995)
[37] C. C. Menzemer et al, "Influence of Temperature on Impact Fracture Behavior of an Alloy Steel," Materials and Design 22, pp. 659-667 (2001)

QR CODE