簡易檢索 / 詳目顯示

研究生: 黃柏榮
Bo-Rong Huang
論文名稱: 摻雜鈰之碳量子點對二氧化鈦光催化性能調控之研究
Study on the modulation of photocatalytic performance of titanium dioxide by cerium-doped carbon quantum dots
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳詩芸
Shih-Yun Chen
陳良益
Liang-Yih Chen
陳啟亮
Chi-Liang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 67
中文關鍵詞: 二氧化鈦碳量子點光觸媒稀土元素摻雜碳量子點染劑降解
外文關鍵詞: Titanium dioxide, Carbon quantum dots, Photocatalyst, Rare earth-doped carbon quantum dots, Dye degradation
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討摻雜鈰元素之碳量子點(Ce-CQDs)對二氧化鈦(TiO2)光催化性能的調控。首先,通過調整六水硝酸鈰前驅物並製備五種不同摻雜濃度的Ce-CQDs,並利用感應耦合電漿質譜儀(ICP-MS)對摻雜元素之濃度進行分析;結果顯示,隨著前驅物濃度的增加,鈰元素於碳量子點中之濃度也逐漸升高。接著透過X射線繞射(XRD)分析、傅立葉轉換紅外光譜(FT-IR)分析、穿透式電子顯微鏡(TEM)影像分析以及X射線吸收光譜(XAS)等方法,探討各樣品之結構與性質;隨後,將Ce-CQDs與TiO2混合製備複合材料TiO2/Ce-CQDs,並在模擬太陽光下進行甲基橙(Methyl orange, MO)染劑的降解實驗。實驗結果顯示,Ce-CQDs可以 提升TiO2之光吸收範圍並提升光催化降解效率;此外,透過紫外光電子能譜(UPS)和低能量反光電子能譜(LEIPS)分析確認價帶和導帶位置,並推測其光催化降解機制。結果表明,摻雜鈰元素能提供碳量子點更多的電子,增強其電子轉移能力,從而提升複合材料的光催化降解效率。


This study investigates the modulation of photocatalytic performance of titanium dioxide (TiO2) by cerium-doped carbon quantum dots (Ce-CQDs). Initially, five different concentrations of Ce-CQDs were prepared by varying the amount of cerium nitrate hexahydrate precursor, and their elemental concentrations were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that the cerium concentration in the carbon quantum dots increased with the precursor concentration. Subsequently, the structures and properties of the samples were characterized using X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM) imaging, and X-ray absorption spectroscopy (XAS). The results showed that the cerium-doped carbon quantum dots did not form new crystalline phases, and their optical properties changed with the increase in cerium concentration. Next, Ce-CQDs were mixed with TiO2 to prepare composite materials (TiO2/Ce-CQDs), and degradation experiments on methyl orange (MO) dye were conducted under simulated sunlight. The results indicated that cerium doping provides more electrons to the carbon quantum dots, enhancing their electron transfer capability, thereby improving the photocatalytic degradation efficiency of the composite material. Moreover, the valence and conduction band positions of the samples were determined using ultraviolet photoelectron spectroscopy (UPS) and low energy inverse photoemission spectroscopy (LEIPS), and the photocatalytic degradation mechanism was inferred. In summary, this study demonstrates that cerium-doped carbon quantum dots can significantly enhance the photocatalytic performance of titanium dioxide, providing an effective method for modifying photocatalytic materials. Comprehensive characterization using various analytical instruments verified the effect of cerium doping on the optical and chemical properties of carbon quantum dots, and the experimental results confirmed their potential in photocatalytic degradation applications.

論文摘要 I Abstract II 誌謝 IV 目 錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 第二章 理論介紹及文獻回顧 4 2.1 光觸媒 4 2.1.1 光觸媒原理與簡介 4 2.1.2 光觸媒反應機制 5 2.2 材料特性與相關文獻 7 2.2.1 碳量子點與光催化應用 7 2.2.2 碳量子點修飾光催化材料 7 2.2.3 碳量子點之改質 9 第三章 實驗方法與分析儀器 15 3.1 材料製備方式與流程 15 3.1.1 碳量子點製備 15 3.1.2 鈰摻雜之碳量子點製備 16 3.1.3 二氧化鈦奈米顆粒製備 18 3.1.4 碳量子點與二氧化鈦奈米顆粒製備複合物 20 3.2 感應耦合電漿分析(ICP-MS) 22 3.3 X光繞射分析 23 3.4 FT-IR分析 24 3.5 穿透式電子顯微鏡分析技術 25 3.5.1 穿透式電子顯微鏡/能量散射X射線譜 25 3.5.2 掃描穿透式電子顯微鏡/電子能量損失光譜 27 3.6 X光吸收光譜 28 3.7 紫外光電子能譜及低能量反光電子能譜分析 29 3.8 拉曼光譜學分析 30 3.9 紫外光/可見光吸收光譜 31 3.10 光致發光光譜 32 3.11 電子順磁共振 33 3.12 光催化降解性能分析 34 第四章 結果與討論 35 4.1 不同濃度鈰元素摻雜量與碳量子點之性質 35 4.1.1 ICP-MS分析 35 4.1.2 XRD分析 36 4.1.3 FT-IR分析 37 4.1.4 TEM影像分析 38 4.1.5 XAS分析 39 4.1.6 UV-Vis分析 40 4.1.7 PL分析 41 4.1.8 綜合比較與討論 43 4.2 摻雜鈰之碳量子點對二氧化鈦光催化性能影響 44 4.2.1 PL分析 44 4.2.2 光催化降解之實驗結果與分析 44 4.2.3 XRD分析 47 4.2.4 TEM分析 48 4.2.5 Raman分析 50 4.2.6 XAS分析 51 4.2.7 UV-Vis分析 53 4.2.8 光催化降解性能優化與機制分析 54 4.2.9 UPS及LEIPS分析 57 4.2.10 綜合比較與討論 58 第五章 結論 60 參考文獻 61

[1] Li, Z., Wang, S., Wu, J., & Zhou, W. (2022). Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renewable
and Sustainable Energy Reviews, 156, 111980.
[2] Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
[3] Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., ... & Xie, S. Y. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757.
[4] Wang, C., Zhang, L., Huang, X., Zhu, Y., Li, G., Gu, Q., ... & Ma, D. (2019). Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nature Communications, 10(1), 4348.
[5] Munir, S., Shah, S. M., & Hussain, H. (2016). Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Materials & Design, 92, 64-72.
[6] Padmanabhan, N. T., Thomas, N., Louis, J., Mathew, D. T., Ganguly, P., John, H., & Pillai, S. C. (2021). Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 271, 129506.
[7] Vallan, L., & Imahori, H. (2022). Citric acid-based carbon dots and their application in energy conversion. ACS applied electronic materials, 4(9), 4231-4257.
[8] Zhang, M., Zhao, L., Du, F., Wu, Y., Cai, R., Xu, L., ... & Du, F. (2019). Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging. Nanotechnology, 30(32), 325101.
[9] Sharma, S., Dutta, V., Singh, P., Raizada, P., Rahmani-Sani, A., Hosseini-Bandegharaei, A., & Thakur, V. K. (2019). Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. Journal of Cleaner Production, 228, 755-769.
[10] Chen, B. B., Liu, M. L., Li, C. M., & Huang, C. Z. (2019). Fluorescent carbon dots functionalization. Advances in colloid and interface science, 270, 165-190.
[11] Xu, X., Min, H., & Li, Y. (2023). Preparation and application of carbon quantum dot fluorescent probes combined with rare earth ions. Analytical Methods: Advancing Methods and Applications.
[12] Li, F., Yang, D., & Xu, H. (2019). Non‐metal‐heteroatom‐doped carbon dots: synthesis and properties. Chemistry–A European Journal, 25(5), 1165-1176.
[13] Akbar, K., Moretti, E., & Vomiero, A. (2021). Carbon dots for photocatalytic degradation of aqueous pollutants: recent advancements. Advanced Optical Materials, 9(17), 2100532.
[14] Batzill, M. (2011). Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy & Environmental Science, 4(9), 3275-3286.
[15] Janczarek, M., Klapiszewski, Ł., Jędrzejczak, P., Klapiszewska, I., Ślosarczyk, A., & Jesionowski, T. (2022). Progress of functionalized TiO2-based nanomaterials in the construction industry: A comprehensive review. Chemical Engineering Journal, 430, 132062.
[16] Al-Mamun, M. R., Kader, S., Islam, M. S., & Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248.
[17] Sirirerkratana, K., Kemacheevakul, P., & Chuangchote, S. (2019). Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets. Journal of cleaner production, 215, 123-130.
[18] Nur, A. S., Sultana, M., Mondal, A., Islam, S., Robel, F. N., Islam, A., & Sumi, M. S. A. (2022). A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728.
[19] Tao, S., Zhu, S., Feng, T., Xia, C., Song, Y., & Yang, B. (2017). The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Materials today chemistry, 6, 13-25.
[20] Hou, X., Hu, Y., Wang, P., Yang, L., Al Awak, M. M., Tang, Y., ... & Sun, Y. P. (2017). Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon, 122, 389-394.
[21] Zhang, Z., & Fan, Z. (2021). Application of cerium–nitrogen co-doped carbon quantum dots to the detection of tetracyclines residues and bioimaging. Microchemical Journal, 165, 106139.
[22] Asadzadeh-Khaneghah, S., Habibi-Yangjeh, A., & Nakata, K. (2019). Decoration of carbon dots over hydrogen peroxide treated graphitic carbon nitride: exceptional photocatalytic performance in removal of different contaminants under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 374, 161-172.
[23] Habibi-Yangjeh, A., Feizpoor, S., Seifzadeh, D., & Ghosh, S. (2020). Improving visible-light-induced photocatalytic ability of TiO2 through coupling with Bi3O4Cl and carbon dot nanoparticles. Separation and Purification Technology, 238, 116404.
[24] Cailotto, S., Mazzaro, R., Enrichi, F., Vomiero, A., Selva, M., Cattaruzza, E., ... & Perosa, A. (2018). Design of carbon dots for metal-free photoredox catalysis. ACS applied materials & interfaces, 10(47), 40560-40567.
[25] Yu, H., Shi, R., Zhao, Y., Waterhouse, G. I., Wu, L. Z., Tung, C. H., & Zhang, T. (2016). Smart utilization of carbon dots in semiconductor photocatalysis. Advanced materials, 28(43), 9454-9477.
[26] Long, C., Jiang, Z., Shangguan, J., Qing, T., Zhang, P., & Feng, B. (2021). Applications of carbon dots in environmental pollution control: A review. Chemical Engineering Journal, 406, 126848.
[27] Nair, A., Haponiuk, J. T., Thomas, S., & Gopi, S. (2020). Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomedicine & Pharmacotherapy, 132, 110834.
[28] Ding, H., Zhou, X. X., Wei, J. S., Li, X. B., Qin, B. T., Chen, X. B., & Xiong, H. M. (2020). Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon, 167, 322-344.
[29] Zhang, X., Li, Z., Xu, S., & Ruan, Y. (2021). Carbon quantum dot-sensitized hollow TiO2 spheres for high-performance visible light photocatalysis. New Journal of Chemistry, 45(19), 8693-8700.
[30] Huo, P., Guan, J., Zhou, M., Ma, C., Liu, X., Yan, Y., & Yuan, S. (2017). Carbon quantum dots modified CdSe loaded reduced graphene oxide for enhancing photocatalytic activity. Journal of Industrial and Engineering Chemistry, 50, 147-154.
[31] Zhang, H., Huang, H., Ming, H., Li, H., Zhang, L., Liu, Y., & Kang, Z. (2012). Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. Journal of Materials Chemistry, 22(21), 10501-10506.
[32] Quan, B., Liu, W., Liu, Y., Zheng, Y., Yang, G., & Ji, G. (2016). Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: synthesis and enhanced photocatalytic properties. Journal of colloid and interface science, 481, 13-19.
[33] Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., ... & Lee, S. T. (2010). Water‐soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie, 26(122), 4532-4536.
[34] Ma, Y., Li, X., Yang, Z., Xu, S., Zhang, W., Su, Y., ... & Zhang, Y. (2016). Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots. Langmuir, 32(37), 9418-9427.
[35] Ambade, R. B., Ali, M., Lee, K. H., Jeong, W., Jeong, S. H., & Han, T. H. (2023). Nitrogen and Sulfur Co-Doped Carbon Quantum Dot-Engineered TiO2 Graphene on Carbon Fabric for Photocatalysis Applications. ACS Applied Nano Materials, 6(17), 15782-15794.
[36] Jana, J., & Pal, T. (2017). An account of doping in carbon dots for varied applications. Natural Resources & Engineering, 2(1), 5-12.
[37] Kailasa, S. K., & Koduru, J. R. (2022). Perspectives of magnetic nature carbon dots in analytical chemistry: From separation to detection and bioimaging. Trends in Environmental Analytical Chemistry, 33, e00153.
[38] da Rocha, J. D. G., Cechinel, M. A. P., Rocha, L. F., Riella, H. G., Padoin, N., & Soares, C. (2024). Exploring the Potential of Rare Earth Doped Carbon Dots: Concepts and Applications. Chemical Engineering Journal Advances, 100583.
[39] Saini, D., Garg, A. K., Dalal, C., Anand, S. R., Sonkar, S. K., Sonker, A. K., & Westman, G. (2022). Visible-light-promoted photocatalytic applications of carbon dots: a review. ACS Applied Nano Materials, 5(3), 3087-3109.
[40] Mu, Z., Hua, J., Tammina, S. K., & Yang, Y. (2019). Visible light photocatalytic activity of Cu, N co-doped carbon dots/Ag3PO4 nanocomposites for neutral red under green LED radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, 123643.
[41] John, B. K., & Mathew, B. (2024). Fabrication of lanthanum-mediated carbon quantum dots for the fluorescent detection of aniline and enhancement in photocatalytic degradation efficiency of zirconium oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 446, 115127.
[42] Busch, U. (2021). Progress in Physical X-Ray Research Until 1915. In: Busch, U. (eds) Wilhelm Conrad Röntgen. Classic Texts in the Sciences. Birkhäuser, Cham.
[43] Gong, Y., & Dong, Z. (2021). Transfer, transportation, and accumulation of cerium-doped carbon quantum dots: Promoting growth and development in wheat. Ecotoxicology and Environmental Safety, 226, 112852.
[44] Zhang, M., Zhao, L., Du, F., Wu, Y., Cai, R., Xu, L., ... & Du, F. (2019). Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging. Nanotechnology, 30(32), 325101.
[45] Garvie, L. A. J., & Buseck, P. R. (1999). Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. Journal of Physics and Chemistry of solids, 60(12), 1943-1947.
[46] Koller, V., Lustemberg, P. G., Spriewald-Luciano, A., Gericke, S. M., Larsson, A., Sack, C., ... & Over, H. (2023). Critical Step in the HCl Oxidation Reaction over Single-Crystalline CeO2–X (111): Peroxo-Induced Site Change of Strongly Adsorbed Surface Chlorine. ACS Catalysis, 13(19), 12994-13007.
[47] Zhang, X., Li, Z., Xu, S., & Ruan, Y. (2021). Carbon quantum dot-sensitized hollow TiO2 spheres for high-performance visible light photocatalysis. New Journal of Chemistry, 45(19), 8693-8700.
[48] Barawi, M., García-Tecedor, M., Gomez-Mendoza, M., Gorni, G., Liras, M., de la Peña O’Shea, V. A., & Collado, L. (2023). Light-Driven Nitrogen Fixation to Ammonia over Aqueous-Dispersed Mo-Doped TiO2 Colloidal Nanocrystals. ACS applied materials & interfaces, 15(46), 53382-53394.
[49] Okumura, T., Fukutsuka, T., Yanagihara, A., Orikasa, Y., Arai, H., Ogumi, Z., & Uchimoto, Y. (2011). Electronic and local structural changes with lithium-ion insertion in TiO2-B: X-ray absorption spectroscopy study. Journal of Materials Chemistry, 21(39), 15369-15377.
[50] Huang, W. H., Su, W. N., Chen, C. L., Lin, C. J., Haw, S. C., Lee, J. F., & Hwang, B. J. (2021). Structural evolution and Au nanoparticles enhanced photocatalytic activity of sea-urchin-like TiO2 microspheres: An X-ray absorption spectroscopy study. Applied Surface Science, 562, 150127.
[51] Angelome, P. C., Andrini, L., Calvo, M. E., Requejo, F. G., Bilmes, S. A., & Soler-Illia, G. J. (2007). Mesoporous anatase TiO2 films: use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior. The Journal of Physical Chemistry C, 111(29), 10886-10893.
[52] Trenczek-Zajac, A., Synowiec, M., Zakrzewska, K., Zazakowny, K., Kowalski, K., Dziedzic, A., & Radecka, M. (2022). Scavenger-supported photocatalytic evidence of an extended type I electronic structure of the TiO2@ Fe2O3 interface. ACS Applied Materials & Interfaces, 14(33), 38255-38269.
[53] Iida, S. I., Terashima, M., Mamiya, K., Kimoto, T., & Sasaki, S. (2023). Improving the Stability of Li Metal Anode/Solid Electrolyte Interfaces via an Li3PO4 Intermediate Layer: An Investigation of Surface Chemistry and Electronic Band Structure. Journal of The Electrochemical Society, 170(9), 090503.
[54] Kannan, R., Kim, A. R., Eo, S. K., Kang, S. H., & Yoo, D. J. (2017). Facile one-step synthesis of cerium oxide-carbon quantum dots/RGO nanohybrid catalyst and its enhanced photocatalytic activity. Ceramics International, 43(3), 3072-3079.
[55] Gong, Y., & Dong, Z. (2021). Transfer, transportation, and accumulation of cerium-doped carbon quantum dots: Promoting growth and development in wheat. Ecotoxicology and Environmental Safety, 226, 112852.

無法下載圖示 全文公開日期 2034/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE