簡易檢索 / 詳目顯示

研究生: 王譽珊
Yu-Shan Wang
論文名稱: 演化式非破壞性混凝土中性化推論方法之研究-以中小學校舍為例
School Building Evaluation Using the Evolutionary Non-destructive Neutralization of Concrete Depth Inference Method
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 姚乃嘉
Nie-Jia Jerry Yau
黃榮堯
Rong-yau Huang
廖國偉
Kuo-Wei Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 耐震能力非破壞性檢測抗壓強度中性化深度SOS-LSSVM
外文關鍵詞: Seismic Capacity Assessment, Non-destructive Test, compressive strength, Neutralization, SOS-LSSVM
相關次數: 點閱:265下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣中小學校舍建築大多以鋼筋混凝土結構物為主,加上台灣環境高溫潮濕,容易造成混凝土發生中性化現象,導致混凝土破壞,進而加速鋼筋腐蝕,降低結構耐震能力。在校舍耐震能力評估流程中,詳細評估檢測混凝土抗壓強度及混凝土中性化程度,現行採用現場鑽心取樣方法,但此方法會破壞結構物,然而,目前尚無非破壞性檢測方法直接量測混凝土中性化深度。
    因此,本研究先利用非破壞性檢測方法求得混凝土抗壓強度,再由混凝土抗壓強度來推測混凝土中性化深度,但非破懷性檢測仍存在誤差過大的疑慮,所以應用生物共生演算法最小平方差支持向量機(SOS-LSSVM),建立混凝土抗壓強度推論模式及混凝土中性化程度推論模式。
    此外,依照校舍耐震評估流程,校舍經過初步評估後未達到耐震指標,則須進入詳細評估,詳細評估所花費的時間與金額相當可觀,運用演化式非破壞性混凝土中性化程度推論方法,過濾篩選掉一些不必要進入詳細評估之案例,不僅能降低初步評估錯誤個數,如此亦能減少在詳細評估所需鑽心取樣數量,及節省所耗費的金額。


    School Building is usually reinforced concrete structure in Taiwan. Because Taiwan environment is high temperature and wet weather, the concrete occurs the neutral phenomenon. The concrete failure causes corrosion of reinforcing steel and reduces seismic capacity assessment of structures. According to the process of seismic performance of school building, detection of the compressive strength of concrete and the neutralization of concrete depth in the detailed assessment. Currently the detailed assessment used the cylindrical specimen of concrete, but this mothed causes the structures be damage. However, there is no non-destructive testing directly measured the neutralization of concrete depth.
    Therefore, this research used non-destructive testing methods to obtain the compressive strength of concrete, and inferenced the neutralization of concrete depth by the compressive strength of concrete. Because non-destructive testing methods had a large error, this research applied Symbiotic Organisms Search –Hybrid Least Squares Support Vector Machine (SOS-LSSVM) to establish the compressive strength of concrete inference model and the neutralization of concrete depth inference model.
    In addition, in the process of seismic performance of school building, the school building must pass through the preliminary assessment to decide whether it should processed to go on the detailed assessment which cost much money and took much time. So this research used the evolutionary non-destructive neutralization of concrete depth inference method to filter the unnecessary cases to enter the detailed assessment. This method can reduce the cases which are unnecessary to enter the preliminary assessment, but also can reduce the number of the cylindrical specimen of concrete which cost much money and took much time in the detailed assessment.

    摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1研究動機 1 1.2研究目的 3 1.3研究流程 4 1.4論文架構 6 第二章 文獻回顧 8 2.1 非破壞性檢測 8 2.1.1 反彈錘試驗法 9 2.1.2 電子式反彈錘Silver Schmidt 10 2.2 混凝土中性化 11 2.2.1 鋼筋混凝土中性化腐蝕過程 12 2.2.2 混凝土中性化深度預測公式 13 2.3 校舍耐震評估 15 2.3.1 初步評估 16 2.3.2 詳細評估 17 2.4 人工智慧 19 2.4.1 倒傳遞類神經網路(BPNN) 20 2.4.2 支持向量機(SVM) 21 2.4.3 最小平方差支持向量機(LS-SVM) 23 2.4.4 演化式支持向量機 (ESIM) 24 2.4.5 演化式最小平差支持向量機(ELSIM) 26 2.4.6 生物共生演算法最小平方差支持向量機(SOS-LSSVM) 28 2.5 θ-means演算法 33 第三章 演化式非破壞性混凝土中性化程度推論方法 36 3.1 混凝土抗壓強度推論模式 39 3.1.1 確認混凝土抗壓強度影響因子 41 3.1.2 建立混凝土抗壓強度案例資料庫 41 3.1.3 建立混凝土抗壓強度推論模式 45 3.1.4 預測混凝土抗壓強度 49 3.1.5 混凝土抗壓強度推論模式訓練與測試 50 3.1.6 不同模組比較 51 3.2 混凝土中性化程度推論模式 53 3.2.1 確認混凝土中性化程度影響因子 55 3.2.2 建立混凝土中性化程度案例資料庫 55 3.2.3 建立混凝土中性化程度推論模式 58 3.2.4 預測混凝土中性化程度 60 3.2.5 混凝土中性化程度推論模式訓練與測試 60 3.2.6 不同模組比較 66 3.2.7 與理論公式比較 68 第四章 推論方法之應用 69 4.1 案例描述 69 4.2 案例分析 69 第五章 結論與建議 72 5.1 結論 72 5.2 建議 73 參考文獻 74

    [1]王傳輝,《台灣地區鋼筋混凝土橋中性化效應之耐久性評估》,碩士論文,國立台北科技大學土木與防災研究所,2005。
    [2]Min-Yuan Cheng, Doddy Prayogo, Yu-Wei Wu (in preparation). Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model. Construction and Building Materials.
    [3]李永豐,《RC結構物檢測方法與技術-非破壞檢測》,台大營建知識網,2006。
    [4]陳桂清、柯正龍、張道光、饒正、羅建明、林玲換,《現有結構物安全評估及維護研究》,交通部運輸研究所,2002。
    [5]陳宗源,《損傷鋼筋混凝土結構非破壞檢測與初步修復補強之探討-以公共圖書館為例》,碩士論文,中華大學土木與工程資訊學系,2008。
    [6]沈永年、林彥余,《混凝土版抗壓強度與反彈錘數之關係研究》,高雄應用科技大學學報,第37期,第311-322頁,2008。
    [7]林賢正,《鋼筋混凝土腐蝕行為探討》,碩士論文,國立海洋大學,2003。
    [8]涂豐鈞,《考慮劣化與震損影響之RC校舍耐震能力評估研究》,碩士論文,國立台灣科技大學營建工程系,2012。
    [9]黃世建、鍾立來、簡文郁、葉勇凱等,《全國中小學校舍耐震評估與補強施行計畫》,國家地震工程研究中心,2005。
    [10]林炳昌,《校舍結構耐震詳細評估及補強設計審查要項》,中華民國結構工程學會,27卷1期,第81-94頁,2012。
    [11]蘇耕立,《台灣中小學校舍結構耐震能力初步評估方法之探討》,碩士論文,國立台灣大學土木工程系,2008。
    [12]蔡忠憲,《基於資料探勘技術之校舍補強經費與耐震補強結果預測模型》,碩士論文,國立台灣科技大學營建工程系,2013。
    [13]許丁友、鍾立來、廖文義、邱建國、簡文郁、周德光,《國民中小學典型校舍耐震能力初步評估法》,國家地震工程研究中心,2003。 
    [14]校舍耐震資訊網,《縣(市)政府委託辦理校舍耐震能力「詳細評估」勞務採購契約範本》,http://school.ncree.org.tw/,2010。
    [15]Ko, C. H.(1999), “Computer aided decision support system for disaster prevention of hillside residents”, MS thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [16]Fukahori, K. and Kubota, Y. (2000),”Consistency evaluation of landscape design by a decision support system”, Computer-Aided Civil and Infrastructure Engineering, No.15(5), pp.342-354.
    [17]Sundin, S., and Braban-Ledoux, C. (2001), “Artificial intelligence-based decision support technologies in pavement management”, Computer-Aided Civil and Infrastructure Engineering, No.16(2), pp.143-157.
    [18]M.-Y. Cheng, Y.-W. Wu (2009), “Evolutionary support vector machine inference system for construction management”, Automation in Construction, No.18, pp. 597-604.
    [19]M.-Y. Cheng, P.M. Firdausi, D. Prayogo (2014), “High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)”, Engineering Applications of Artificial Intelligence, No.29, pp.104-113.
    [20]M.-Y. Cheng, M.-T. Cao (2014), “Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams”, Engineering Applications of Artificial Intelligence, No.28, pp. 86-96.
    [21]M.-Y. Cheng, D.K. Wibowo, D. Prayogo, A.F.V. Roy (2015), “Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model”, Journal of Civil Engineering and Management, No.21, pp.881-892.
    [22]M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu (2013), “Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study”, Automation in Construction, No.35, pp.306-313.
    [23]M.-Y. Cheng, A.F.V. Roy (2011), “Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines”, International Journal of Project Management, No.29, pp.56-65.
    [24]D. Prayogo (2012), “A Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete”, MS thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [25]M.-Y. Cheng, D. Prayogo, Y.-W. Wu (2013), “Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture”, Journal of Computing in Civil Engineering, 06014003.
    [26]楊智民、劉廣利,《不確定性支持向量機原理及應用》,科學出版社,中國,2006。
    [27]Min-Yuan Cheng, Nhat-Duc Hoang (2012), “Evolutionary Least Squares Support Vector Machine – Userguide, Technical Report”, CIC Lab, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [28]許淑婷,《利用快速混雜基因演算法與模擬機制建立設計專案作業程序最佳化之研究》,碩士論文,國立成功大學,2006。
    [29]吳育偉、鄭明淵,《支持向量機最佳化模式-應用於營建管理決策》,第11屆營建工程與管理學術研討會,2007。
    [30]Storn, R. and K. Storn, and J.A. Lampinen (2005), “Differential Evolution A Practical Approach to Global Optimization”. Springer-Verlag.
    [31]Nhat-Duc Hoang (2012).“Decision Support System for Construction Management Based on Evolutionary Least Squares Support Vector Machine”, MS thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [32]M.-Y. Cheng, D. Prayogo (2014), “Symbiotic Organisms Search: A new metaheuristic optimization algorithm”, Computers & Structures, No.139, pp.98-112.
    [33]D. Prayogo(2015), “An Innovative Parameter-Free Symbiotic Organisms Search (SOS) for Solving Construction-Engineering Problems”, MS thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan.
    [34]張家榮,《以距離與余嫌夾角為基礎之創新群集方法研究》,碩士論文,國立台灣科技大學營建工程系,2014。
    [35]林彥余,《混凝土抗壓強度與超音波速及反彈數關係之研究》,碩士論文,國立高雄應用科技大學土木工程與防災科技研究所,2007。
    [36]魏士翔,《ANIFIS應用於混凝土抗壓強度預測模式》,碩士論文,國立高雄應用科技大學土木工程與防災科技研究所,2012。
    [37]譚克平,《極端值判斷方法簡介》,台東大學教育學報,第十九卷第一期,第131-150頁,2008。
    [38]J.I. Maletic,and A. Marcus(2010), ”Data Cleansing:A Prelude to Knowledge Discovery, Data Mining and Knowledge Discovery Handbook”, O. Maimon, and L. Rokach, eds., Springer US, pp.19-32.
    [39]Yeh, I. C., Lien, C. H., Peng, C. H., & Lien, L. C. (2010), “Modeling Concrete Strength Using Genetic Operation Trees”, International Conference on Machine Learning and Cybernetics, Qingdao: IEEE.
    [40]C.D. Lewis(1982), “Industrial and Business Forecasting Method”, London: Butterworth-Heinemann.
    [41]M.-Y. Cheng, L.-C. Lien, (2012), Hybrid Artificial Intelligence–Based PBA for Benchmark Functions and Facility Layout Design Optimization, Journal of Computing in Civil Engineering 26 (5): 612-624.
    [42]M.-Y. Cheng, D. Prayogo, Y.-W. Wu, M.M. Lukito, 2016, A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure, Automation in Construction 69: 21-33.
    [43]M.-Y. Cheng, D. Prayogo, 2016, A novel fuzzy adaptive teaching–learning-based optimization (FATLBO) for solving structural optimization problems, Engineering with Computers: 1-15.
    [44]Lewis, C. D., 1982, International and Business Forecasting Methods. London: Butterwo.
    [45]G.G. Tejani, V.J. Savsani, Patel V. K., 2016, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. Journal of Computational Design and Engineering.
    [46]M.-Y. Cheng, D. Prayogo, D.-H. Tran, 2015, Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search. Journal of Computing in Civil Engineering: 04015036.
    [47]D.-H. Tran, M.-Y. Cheng, D. Prayogo, 2016, A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94: 132-145.
    [48]M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, 2014, SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 26(4): 293-308.
    [49]S. Duman, 2016, Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Computing and Applications: 1-15.
    [50]H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, 2016, Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy, 100: 285-297.
    [51]E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi, 2015, Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 101: 857-861.
    [52]A. Panda, S. Pani, 2016, A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Applied Soft Computing, 46: 344-360.

    QR CODE