簡易檢索 / 詳目顯示

研究生: 黃明東
Ming-Dung Huang
論文名稱: 建築專案現場管理人力配置推論模式之建立
Engineer Resource On-Site Allocation Inference Model in Construction Project For Building
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 郭斯傑
Sy-Jye Guo
蔡明修
Ming-Hsiu Tsai
謝佑明
Yo-Ming Hsieh
鄭明淵
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 138
中文關鍵詞: 生物共生演算法最小平方差支持向量機現場管理人力配置推論模糊偏好關係
外文關鍵詞: Symbiotic Organisms Search-Least Squares Support Vector Machines (SOS-LSSVM), manpower of on-site engineer prediction model, Fuzzy Preference Relationship (FPR)
相關次數: 點閱:255下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    建築專案開工前,此階段擁有資訊較少,對於現場管理人力配置人數多由人均產能依專案預算來預估,雖能簡單快速推估,其精準度卻很差。本研究蒐集國內外現場管理人力預測相關文獻,彙整出現場管理人力配置的影響因素,並且利用專家問卷、模糊偏好關係(FPR)及統計分析工具(SPSS)篩選出在建築專案開工前顯著影響現場管理人力配置的因子,接著應用生物共生演算法最小平方差支持向量機(Symbiotic Organisms Search-Least Squares Support Vector Machines, SOS-LSSVM)建立專案開工前現場管理人力配置推論模式,藉由模式訓練與測試,找出輸入(影響因子)與輸出(管理人數)的映射關係,做出合理的現場管理人力配置推論。本研究透過文獻彙整、專家問卷調查與統計分析工具篩選出8個影響因子,接著根據此8個因子蒐集43筆實際工程案例並建立案例庫。將案例資料隨機分成10組,利用交叉驗證準則(Cross Validation)的概念進行訓練與測試。推論結果顯示平均絕對百分比誤差(Mean Absolute Percent Error, MAPE)值界於10~30%,屬於合理且接近優良的推論,有效取代傳統主觀經驗之預測。最後將SOS-LSSVM與其他推論模式相比較,其結果亦優於迴歸分析(Regression)、倒傳類神經(BPNN)、支持向量機(SVM)、最小平方差支持向量機(LS-SVM)、演化式支持向量機推論模式(ESIM)與演化式最小平差支持向量機(ELSIM),表示本研究應用SOS-LSSVM模式更能有效且準確地做出推論。
    關鍵詞:生物共生演算法最小平方差支持向量機(SOS-LSSVM)、現場管理人力配置推論、模糊偏好關係(FPR)


    Abstract
    It is common in most construction projects for building that manpower plans of on-site engineer, due to insufficient information, are usually developed based on the average productivity or project budget for each function. Although this approach can be done quickly, but it rarely delivers good accuracy.
    This research started with reviewing domestic and international papers about manpower of on-site engineer estimation, and aggregating factors that affected manpower plans of on-site engineer. We followed to use results from expert survey, fuzzy preference relationship (FPR) and statistical analysis tool (SPSS) to select the prominent factors for manpower plans of on-site engineer prior to the beginning of the construction projects for building. The technique of symbiotic organisms search-least squares support vector machines (SOS-LSSVM) was then deployed to set up an inference model, which, through trial and test, could be further used in mapping out the relation between input (effect factors) and output (manpower of on-site engineer requirements), and generating the most reasonable manpower of on-site engineer prediction model.
    Eight factors were generated from the paper review, expert survey, and statistical analyses. Forty three construction projects for building were identified, guided by these 8 factors, as the study database. Data from these projects were separated into 10 groups randomly, and trialed and tested by using cross validation principles. The results rendered a mean absolute percent error (MAPE) in the range of 10%~30%, which indicated the methodology to be reasonable and close to excellent, and justified itself to replace the traditional prediction by personal experiences.
    This SOS-LSSVM based approach was further compared to other inference models, such as Regression, BPNN, SVN, LS-SVM, ESIM and ELSIM, all resulted in favor of our methodology. We therefore concluded that it is more effective and precise to use SOS-LSSVM model in manpower of on-site engineer planning.

    Key words: Symbiotic Organisms Search-Least Squares Support Vector Machines (SOS-LSSVM), manpower of on-site engineer prediction model, Fuzzy Preference Relationship (FPR)

    摘要 II Abstract III 致謝 V 目錄 VII 表目錄 XI 圖目錄 XIV 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 5 1.3 研究範圍與限制 6 1.4 研究流程 7 第2章 文獻回顧 10 2.1人力資源規劃及專案的理論 10 2.2 現場管理人力配置影響因素探討 19 2.3 現場管理人力配置國內外推論模式相關文獻 27 2.4 倒傳類神經網路(BPNN) 32 2.6 最小平方差支持向量機(Least Squares SVM) 36 2.7 演化式支持向量機 (ESIM) 38 2.7.1 快速混雜基因演算法(fmGA) 38 2.7.2 演化式支持向量機 (ESIM) 40 2.8 演化式最小平差支持向量機(ELSIM) 41 2.8.1 差分進化演算法(DE) 41 2.8.2 演化式最小平方差支持向量機(ELSIM) 42 2.9 生物共生演算法最小平方差支持向量機 (SOS-LSSVM) 43 2.9.1 生物共生演算法(Symbiotic Organisms Search,SOS) 43 2.9.2 生物共生演算法最小平方差支持向量機 (SOS-LSSVM) 47 2.9.3 SOS-LSSVM特性 51 2.9.4 SOS-LSSVM限制 52 2.10 模糊偏好關係(FPR) 53 第3章 確立建築專案現場管理人力配置推論模式因子 56 3.1 因子篩選流程 56 3.2 第一階段因子篩選 57 3.2.1 問卷設計 57 3.2.2 問卷填寫 59 3.2.3 問卷統計量計算 60 3.2.4 因子篩選與限制 61 3.3 定性因子量化 65 3.3.1 FPR問卷調查 65 3.3.2 量化結果 71 3.4 第二階段因子篩選 72 第4章營造現場管理人力配置推論模式建立與測試 78 4.1 案例庫建立 78 4.1.1 正規化 80 4.2 推論模式建立 81 4.3 本研究推論模式與其他模式比較 86 4.3.1本研究模式推論結果 86 4.3.2本研究模式修正案例推論結果 87 4.3.3不同模式比較 88 第5章 結論與建議 95 5.1 結論 95 5.2 建議 97 參考文獻 98 附錄A 102 附錄B 106 附錄C 116 附錄D 119

    參考文獻
    1. 簡明智,2005,營建工程人力調派最佳化決策模式之研究,中央大學。
    2. 張志國,2005,營造工地管理人資量化與預測,中央大學。
    3. 莊秉元,2005,工地管理人力規劃之研究,高雄第一科技大學。
    4. 林家豪,2003,營造廠現場管理人力配置之研究,台灣科技大學。
    5. 俞偉武,2008,營建工程短期人力指派最佳化模式之研究,中央大學。
    6. 陳韋向,2013,營建專案人力配置最佳化及參與時序模式建立,中央大學。
    7. Ryad Tuma Hazem& Pramila Adavi,2015,Impact Of External And Human Factors On Labor Productivity Of Construction Projects In Iraq。
    8. Adnan Enshassi, Sherif Mohamed &Saleh Abushaban,2009,Factors Affecting The Performance Of Construction Projects In The Gaza Strip。
    9. M. Reza Hosseini,Nicholas Chileshe,Parviz Ghoddousi&Omid Poorafshar,2013,Investigating Projects’ Working Environment Effects On Labour Productivity: Perceptions Of Iranian Road Contractors’ Managers。
    10. Benviolent Chigara& Tirivavi Moyo,2014,Factors Affecting Labor Productivity on Building Projects in Zimbabwe。
    11. Elena Navarro Astor&Joaquin Fuentes-Del-Burgo,2011,Factors that affect the productivity of construction projects in small and medium companies: Analysis of its impact on planning。
    12. Anil L. Agarwal,B.L.Rajput&Er.Satpute Mangesh A.,2013,Model Formulation to Estimate Manpower Demand for the Real-Estate Construction Projects in India。
    13. Suykens, J., et al., 2002, Least Square Support Vector Machines, World Scientific Publishing Co. Pte. Ltd.。
    14. M.-Y. Cheng, Y.-W. Wu, 2009,Evolutionary support vector machine inference system for construction management , Automation in Construction, vol. 18(5), pp. 597-604。
    15. M.-Y. Cheng, D. Prayogo,2014, Symbiotic Organisms Search: A new metaheuristic optimization algorithm, Computers & Structures, vol. 139, pp. 98-112。
    16. M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu, 2013,Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study, Automation in Construction, vol. 35, pp. 306-313。
    17. M.-Y. Cheng, N.-D. Hoang,2012,Evolutionary Least Squares Support Vector Machine – Userguide, Technical Report, National Taiwan Univ. of Sci. and Tech.。
    18. 魏一正,2013,營造業人力需求探討-以灰預測與統計方法分析,私立高苑科技大學。
    19. 劉櫂嫺,2005,營建管理專案團隊人力資源運作構架之研究,國立台灣科技大學。
    20. 鍾楚璿, 2010, 業主組織文化對營建專案績效之影響, 國立交通大學。
    21. 葉錦璋,2008,影響營建專案經理績效因素之研究,國立高雄應大。
    22. D.E. Goldberg, K. Deb, H. Kaegupta, G. Harik,1993, Rapid, accurate optimization of difficult problems using fast messy genetic algorithms, Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 56– 64。
    23. 許淑婷,2006,利用快速混雜基因演算法與模擬機制建立設計專案作業程序最佳化之研究,國立成功大學。
    24. Price, K.V., R.M. Storn, J.A. Lampinen, 2005,Differential Evolution A Practical Approach to Global Optimization, Springer-Verlag。
    25. Storn, R, K. Price,1997, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Global Optim, vol. 11, pp. 341–359。
    26. G.G. Tejani, V.J. Savsani, V.K. Patel,2016, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization, Journal of Computational Design and Engineering。
    27. M.-Y. Cheng, D. Prayogo, D.-H. Tran, 2015,Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search, Journal of Computing in Civil Engineering。
    28. D.-H. Tran, M.-Y. Cheng, D. Prayogo, 2016,A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem, Knowledge-Based Systems, vol. 94, pp. 132-145。
    29. M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, 2014,SOS optimization model for bridge life cycle risk evaluation and maintenance strategies, Journal of the Chinese Institute of Civil and Hydraulic Engineering, vol. 26(4), pp. 293-308。
    30. S. Duman, 2016,Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones, Neural Computing and Applications。
    31. H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, 2016,Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand”, Energy, vol. 100, pp. 285-297。
    32. E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi,2015,Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol. 101, pp. 857-861。
    33. A. Panda, S. Pani, 2016,A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems, Applied Soft Computing, vol. 46 pp. 344-360。
    34. M.-Y. Cheng, D. Prayogo, Y.-W. Wu, (in preparation), Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model, Construction and Building Materials。
    35. E. Herrera-Viedma, F. Herrera, F. Chiclana, M. Luque,2004,Some issues on consistency of fuzzy preference relations, European Journal of Operational Research, vol. 154, pp. 98-109。
    36. Tien-Chin Wang, Tsung-Han Chang,2007,Forecasting the probability of successful knowledge management by consistent fuzzy preference relations, Expert Systems with Applications, vol. 32, pp. 801-813。
    37. Lewis, E. B., 1982,Control of body segment differentiation in Drosophila by the bithorax gene complex, Embryonic Development, Part A: Genetics Aspects, Edited by Burger, M. M. and R. Weber. Alan R. Liss, New York, pp. 269-288。
    38. 范智賢,2012,植基於六標準差改善營建專案作業品質績效之探討,私立實踐大學。

    QR CODE